On Parabolic Pdes and Spdes in Sobolev Spaces W P 2 without and with Weights

作者: Nicolai V. Krylov

DOI: 10.1007/978-0-387-75111-5_8

关键词:

摘要: We present a “streamlined” theory of solvability parabolic PDEs and SPDEs in half spaces Sobolev with weights. The approach is based on interior estimates for equations the whole space easier than quite different from standard one.

参考文章(23)
Sergey V. Lototsky, Dirichlet problem for stochasticparabolic equations in smoothdomains Stochastics and Stochastics Reports. ,vol. 68, pp. 145- 175 ,(1999) , 10.1080/17442509908834221
Zdzisław Brzeźniak, Stochastic partial differential equations in M-type 2 Banach spaces Potential Analysis. ,vol. 4, pp. 1- 45 ,(1995) , 10.1007/BF01048965
Zdzisław Brzeźniak, On stochastic convolution in banach spaces and applications Stochastics An International Journal of Probability and Stochastic Processes. ,vol. 61, pp. 245- 295 ,(1997) , 10.1080/17442509708834122
Martin Hairer, Jonathan Mattingly, Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing Annals of Mathematics. ,vol. 164, pp. 993- 1032 ,(2006) , 10.4007/ANNALS.2006.164.993
N. Krylov, An analytic approach to SPDE’s Mathematical Surveys and Monographs. pp. 185- 242 ,(1999) , 10.1090/SURV/064/05
Alessandra Lunardi, Giuseppe Da Prato, Maximal regularity for stochastic convolutions in \( L^p \) spaces Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni. ,vol. 9, pp. 25- 29 ,(1998)
Joseph L. Doob, Stochastic processes ,(1953)
S. V. Lototsky, Sobolev spaces with weights in domains and boundary value problems for degenerate elliptic equations Methods and applications of analysis. ,vol. 7, pp. 195- 204 ,(2000) , 10.4310/MAA.2000.V7.N1.A9
N. V. Krylov, Maximum principle for SPDEs and its applications arXiv: Probability. ,(2006)