Maxima in convex regions

作者: Mordecai J. Golin

DOI: 10.5555/313559.313804

关键词: CombinatoricsSimple (abstract algebra)Binary logarithmRegular polygonMathematicsHeuristicsBounded functionMaximaUniform distribution (continuous)

摘要: Suppose that C is a bounded convex region. Let pl, . , p,, be points drawn from the uniform distribution over and let M,” number of which are maximal. In this note we examine asymptotics E (M$‘) as n -t 00. We show, for example, if planar then, either (M$) = 0 (6) or (Mz) (log n) give simple geometric criterion tells two behaviors applies. This also addresses when higher-dimension,al region, discusses asymptotic behavior higher moments well. Some immediate algorithmic implications follow knowing examined, e.g., existence heuristics finding maxima have fast expected running times their input any many different possible distributions.

参考文章(8)
L. Devroye, Moment Inequalities for Random Variables in Computational Geometry Computing. ,vol. 30, pp. 111- 119 ,(1983) , 10.1007/BF02280782
A. R�nyi, R. Sulanke, �ber die konvexe H�lle von n zuf�llig gew�hlten Punkten Zeitschrift f�r Wahrscheinlichkeitstheorie und Verwandte Gebiete. ,vol. 2, pp. 75- 84 ,(1963) , 10.1007/BF00535300
Luc Devroye, A note on finding convex hulls via maximal vectors Information Processing Letters. ,vol. 11, pp. 53- 56 ,(1980) , 10.1016/0020-0190(80)90036-8
Jon Louis Bentley, Hsiang-Tsung Kung, Mario Schkolnick, Clark D Thompson, On the Average Number of Maxima in a Set of Vectors and Applications Journal of the ACM. ,vol. 25, pp. 536- 543 ,(1978) , 10.1145/322092.322095
Kenneth L. Clarkson, Jon L. Bentley, David B. Levine, Fast linear expected-time alogorithms for computing maxima and convex hulls symposium on discrete algorithms. pp. 179- 187 ,(1990) , 10.5555/320176.320196
Michael I. Shamos, Franco P. Preparata, Computational Geometry: An Introduction ,(1978)