Circ_0002711 knockdown suppresses cell growth and aerobic glycolysis by modulating miR-1244/ROCK1 axis in ovarian cancer.

作者: Chuanyong He , Chengyu Shui , L U Liu , Zixiong Zhang , Weiquan Xie

DOI: 10.1007/S12038-020-00136-0

关键词: Anaerobic glycolysisDownregulation and upregulationMTT assayViability assayCell growthWarburg effectCell biologyGene knockdownChemistryGlycolysis

摘要: It has been well investigated that circular RNAs (circRNAs) play important roles in various cancers. The function of circ_0002711 and its underlying mechanisms ovarian cancer (OC) remain unknown. qRT-PCR western blot were performed to detect the expressions circ_0002711, microRNA-1244 (miR-1244), Rho kinase 1 (ROCK1) OC tissues cells. MTT assay colony formation employed evaluate cell proliferation. Detection lactate production, glucose uptake, ATP level oxygen consumption used determine Warburg effect. Western was examine glycolysis or proliferationrelated genes. Dual-luciferase reporter RIP pull down address relationship among miR-1244, ROCK1. In vivo tumor growth evaluated nude mice. Circ_0002711 upregulated lines. downregulation inhibited viability, ability aerobic glycolysis. contained binding sites with miR1244. Moreover, loss miR-1244 undermined downregulation-mediated function. ROCK1 miR-1244. MiR-1244 upregulation suppressed proliferation glycolysis, which rescued by enhanced expression knockdown hampered upregulating expression. Finally, decreased vivo. Circ_0002711/miR-1244/ROCK1 axis regulated effect

参考文章(37)
Karoline K. Ebbesen, Jørgen Kjems, Thomas B. Hansen, Circular RNAs: Identification, biogenesis and function. Biochimica et Biophysica Acta. ,vol. 1859, pp. 163- 168 ,(2016) , 10.1016/J.BBAGRM.2015.07.007
Maria V. Liberti, Jason W. Locasale, The Warburg Effect: How Does it Benefit Cancer Cells? Trends in Biochemical Sciences. ,vol. 41, pp. 211- 218 ,(2016) , 10.1016/J.TIBS.2015.12.001
Weili Li, Wenzhe Wang, Mingjian Ding, Xiaoliang Zheng, Shenglin Ma, Xiaoju Wang, MiR-1244 sensitizes the resistance of non-small cell lung cancer A549 cell to cisplatin. Cancer Cell International. ,vol. 16, pp. 30- 30 ,(2016) , 10.1186/S12935-016-0305-6
Ikhlak Ahmed, Thasni Karedath, Simeon S. Andrews, Iman K. Al-Azwani, Yasmin Ali Mohamoud, Denis Querleu, Arash Rafii, Joel A. Malek, Altered expression pattern of circular RNAs in primary and metastatic sites of epithelial ovarian carcinoma Oncotarget. ,vol. 7, pp. 36366- 36381 ,(2016) , 10.18632/ONCOTARGET.8917
Yun-Ping Lu, Shi-Xuan Wang, Zhi-Qiang Han, Cai-Hong Chen, Chun-Xia Hu, Jian-Feng Zhou, Yi Hu, Ding Ma, Zhen-Ya Hong, [Effect of blocking of ROCK-1, an effector of small G protein Rho, on the malignant behavior of ovarian tumor cells in vitro]. Chinese journal of oncology. ,vol. 29, pp. 723- 727 ,(2007)
Katarzyna Aleksandra Kujawa, Katarzyna Marta Lisowska, [Ovarian cancer--from biology to clinic]. Postȩpy higieny i medycyny doświadczalnej. ,vol. 69, pp. 1275- 1290 ,(2015) , 10.5604/17322693.1184451
Penelope M. Webb, Susan J. Jordan, Epidemiology of epithelial ovarian cancer. Best Practice & Research in Clinical Obstetrics & Gynaecology. ,vol. 41, pp. 3- 14 ,(2017) , 10.1016/J.BPOBGYN.2016.08.006
Laurent Schwartz, Claudiu Supuran, Khalid Alfarouk, The Warburg Effect and the Hallmarks of Cancer Anti-Cancer Agents in Medicinal Chemistry. ,vol. 17, pp. 164- 170 ,(2017) , 10.2174/1871520616666161031143301
Mariela Cortés-López, Pedro Miura, Emerging Functions of Circular RNAs. Yale Journal of Biology and Medicine. ,vol. 89, pp. 527- 537 ,(2016)
Roi Tschernichovsky, Annekathryn Goodman, Risk‐Reducing Strategies for Ovarian Cancer in BRCA Mutation Carriers: A Balancing Act Oncologist. ,vol. 22, pp. 450- 459 ,(2017) , 10.1634/THEONCOLOGIST.2016-0444