作者: Francesco Ticozzi , Luca Mazzarella , Alain Sarlette
DOI:
关键词: Symmetrization 、 Randomized algorithm 、 Quantum 、 Dynamical decoupling 、 Computation 、 Applied mathematics 、 Mathematical optimization 、 Mathematics 、 Robustness (computer science) 、 Probability distribution 、 Finite group
摘要: This paper interprets and generalizes consensus-type algorithms as switching dynamics leading to symmetrization with respect the actions of a finite group. Explicit convergence results are provided in grouptheoretic formulation, both for deterministic stochastic dynamics. We show how framework directly extends scope consensustype applications diverse consensus on probability distributions (either classical or quantum), computation discrete Fourier transform, uniform random state generation, openloop disturbance rejection by quantum dynamical decoupling. indicates way extend desirable robustness consensus-inspired even more fields application.