作者: Shuangshuang Fu , Guodong Shi , Ian R. Petersen
关键词: Hamiltonian (quantum mechanics) 、 Quantum network 、 Mathematics 、 Quantum dissipation 、 Discrete mathematics 、 Master equation 、 Commutative property 、 Quantum decoherence 、 Qubit 、 Topology 、 Operator (computer programming)
摘要: In this paper, we study the decoherence property of synchronization master equation for networks qubits interconnected by swapping operators. The network Hamiltonian is assumed to be diagonal with different entries so that it might not commutative We prove a theorem establishing general condition under which almost complete decohernece achieved, i.e., all but two off-diagonal density operator asymptotically tend zero. This result explicitly shows quantum dissipation forget information initially encoded when internal (induced Hamiltonian) and external operators) qubit interactions do comply each other.