A decoherence theorem in quantum-network synchronization

作者: Shuangshuang Fu , Guodong Shi , Ian R. Petersen

DOI: 10.1109/CCA.2015.7320877

关键词: Hamiltonian (quantum mechanics)Quantum networkMathematicsQuantum dissipationDiscrete mathematicsMaster equationCommutative propertyQuantum decoherenceQubitTopologyOperator (computer programming)

摘要: In this paper, we study the decoherence property of synchronization master equation for networks qubits interconnected by swapping operators. The network Hamiltonian is assumed to be diagonal with different entries so that it might not commutative We prove a theorem establishing general condition under which almost complete decohernece achieved, i.e., all but two off-diagonal density operator asymptotically tend zero. This result explicitly shows quantum dissipation forget information initially encoded when internal (induced Hamiltonian) and external operators) qubit interactions do comply each other.

参考文章(17)
Francesco Ticozzi, Luca Mazzarella, Alain Sarlette, From Consensus to Robust Randomized Algorithms: A Symmetrization Approach ∗ arXiv: Quantum Physics. ,(2013)
M. Laloy, P. Habets, Nicolas Rouche, Stability Theory by Liapunov’s Direct Method ,(1977)
Mehran Mesbahi, Magnus Egerstedt, Graph Theoretic Methods in Multiagent Networks ,(2010)
Francesco Petruccione, Heinz-Peter Breuer, The Theory of Open Quantum Systems ,(2002)
John M. Danskin, The Theory of Max-Min, with Applications SIAM Journal on Applied Mathematics. ,vol. 14, pp. 641- 664 ,(1966) , 10.1137/0114053
G. Lindblad, On the Generators of Quantum Dynamical Semigroups Communications in Mathematical Physics. ,vol. 48, pp. 119- 130 ,(1976) , 10.1007/BF01608499
Zhiyun Lin, Bruce Francis, Manfredi Maggiore, State Agreement for Continuous-Time Coupled Nonlinear Systems Siam Journal on Control and Optimization. ,vol. 46, pp. 288- 307 ,(2007) , 10.1137/050626405
Frank Verstraete, Michael M. Wolf, J. Ignacio Cirac, Quantum computation and quantum-state engineering driven by dissipation Nature Physics. ,vol. 5, pp. 633- 636 ,(2009) , 10.1038/NPHYS1342