Radical Computation for Small Characteristics

作者: Ryutaroh Matsumoto

DOI: 10.1007/978-3-540-93806-4_33

关键词: Ideal (set theory)Coding theoryPolynomialCryptographyComputationAlgorithmPolynomial ringField (mathematics)Computer science

摘要: In applications to coding theory and cryptography, the characteristic of coefficient field is often small or 2. We will briefly review an algorithm computing radical a polynomial ideal specialized for characteristics.

参考文章(16)
Wolfram Decker, Gert-Martin Greuel, Gerhard Pfister, Primary Decomposition: Algorithms and Comparisons Algorithmic Algebra and Number Theory. pp. 187- 220 ,(1999) , 10.1007/978-3-642-59932-3_10
James Harold Davenport, On the integration of algebraic functions ,(1981)
Heinz Kredel, Volker Weispfenning, Thomas Becker, Gröbner Bases: A Computational Approach to Commutative Algebra ,(2011)
Teresa Krick, Alessandro Logar, An Algorithm for the Computation of the Radical of an Ideal in the Ring of Polynomials Applicable Algebra in Engineering, Communication and Computing. pp. 195- 205 ,(1991) , 10.1007/3-540-54522-0_108
P. Gianni, B. Trager, Square-free algorithms in positive characteristic Applicable Algebra in Engineering, Communication and Computing. ,vol. 7, pp. 1- 14 ,(1996) , 10.1007/BF01613611
E. R. Berlekamp, Factoring polynomials over large finite fields Mathematics of Computation. ,vol. 24, pp. 713- 735 ,(1970) , 10.1090/S0025-5718-1970-0276200-X
A. Seidenberg, Constructions in algebra Transactions of the American Mathematical Society. ,vol. 197, pp. 273- 313 ,(1974) , 10.1090/S0002-9947-1974-0349648-2
Patrizia Gianni, Barry Trager, Gail Zacharias, Gröbner bases and primary decomposition of polynomial ideals Journal of Symbolic Computation. ,vol. 6, pp. 149- 167 ,(1988) , 10.1016/S0747-7171(88)80040-3
Ryutaroh Matsumoto, Computing the Radical of an Ideal in Positive Characteristic Journal of Symbolic Computation. ,vol. 32, pp. 263- 271 ,(2001) , 10.1006/JSCO.2001.0446