Square-free algorithms in positive characteristic

作者: P. Gianni , B. Trager

DOI: 10.1007/BF01613611

关键词:

摘要: We study the problem of computation square-free decomposition for polynomials over fields positive characteristic. For which are explicitly finitely generated perfect fields, we show how classical algorithm characteristic zero can be generalized using multiple derivations. more general one must make an additional constructive hypothesis in order to decidable. that Seidenberg'sCondition P gives a necessary and sufficient condition on fieldK computing complete square free with coefficients any finite algebraic extension ofK.

参考文章(9)
Abraham Seidenberg, Construction of the integral closure of a finite integral domain Rendiconti del Seminario Matematico e Fisico di Milano. ,vol. 40, pp. 101- 120 ,(1970) , 10.1007/BF02923228
David Rea Musser, Algorithms for polynomial factorization. The University of Wisconsin - Madison. ,(1971)
A. Seidenberg, Constructions in algebra Transactions of the American Mathematical Society. ,vol. 197, pp. 273- 313 ,(1974) , 10.1090/S0002-9947-1974-0349648-2
Wim Ruitenburg, Ray Mines, Fred Richman, A Course in Constructive Algebra ,(1987)
Effective Procedures in Field Theory Philosophical Transactions of the Royal Society A. ,vol. 248, pp. 407- 432 ,(1956) , 10.1098/RSTA.1956.0003
Fred Richman, Seidenberg's condition P Springer, Berlin, Heidelberg. pp. 1- 11 ,(1981) , 10.1007/BFB0090722
David Y.Y. Yun, On square-free decomposition algorithms Proceedings of the third ACM symposium on Symbolic and algebraic computation - SYMSAC '76. pp. 26- 35 ,(1976) , 10.1145/800205.806320
A. Seidenberg, Constructions in a Polynomial Ring Over the Ring of Integers American Journal of Mathematics. ,vol. 100, pp. 685- ,(1978) , 10.2307/2373905
Ray Mines, Fred Richman, Wim Ruitenburg, A Course in Constructive Algebra Universitext. ,(1988) , 10.1007/978-1-4419-8640-5