Deep Convolutional Neural Network-Based Diabetic Retinopathy Detection in Digital Fundus Images

作者: S. Saranya Rubini , R. Saai Nithil , A. Kunthavai , Ashish Sharma

DOI: 10.1007/978-981-13-3600-3_19

关键词: Diabetic retinopathyRetinalConvolutional neural networkArtificial intelligencePattern recognitionDropout (neural networks)Computer scienceDiscriminative modelFundus (eye)Deep learningRetinal Disorder

摘要: Diabetic Retinopathy (DR) is a common medical disorder damaging the retinal blood vessels of diabetic patients. Regular screening fundus images and timely detection initial symptoms DR, namely microaneurysms hemorrhages, are important to reduce possibility vision impairment. The proposed work explores power Convolutional Neural Network (CNN) in analysis disorders. An automated deep learning model named Deep Network-based Detection (DCNN-DRD) has been analyze classify them as healthy or defective based on DR symptoms. A image fed into DCNN-DRD which consists five convolution pooling layers followed by dropout layer three fully connected layers. linear output data produced every represents weighted value gradient descent graph for refinement improve accuracy through several iterations. Thus, does not require any preprocessing learns high-level discriminative features from pixel intensities categorize either defective. trained with subset MESSIDOR dataset ROC dataset. Experimental results show that successfully predicts 97% accuracy.

参考文章(20)
S. Saranya Rubini, A. Kunthavai, Diabetic Retinopathy Detection Based on Eigenvalues of the Hessian Matrix Procedia Computer Science. ,vol. 47, pp. 311- 318 ,(2015) , 10.1016/J.PROCS.2015.04.001
Gil Levi, Tal Hassncer, Age and gender classification using convolutional neural networks computer vision and pattern recognition. pp. 34- 42 ,(2015) , 10.1109/CVPRW.2015.7301352
Wei Shen, Xinggang Wang, Yan Wang, Xiang Bai, Zhijiang Zhang, DeepContour: A deep convolutional feature learned by positive-sharing loss for contour detection computer vision and pattern recognition. pp. 3982- 3991 ,(2015) , 10.1109/CVPR.2015.7299024
Clara I. Sánchez, María García, Agustín Mayo, María I. López, Roberto Hornero, Retinal image analysis based on mixture models to detect hard exudates. Medical Image Analysis. ,vol. 13, pp. 650- 658 ,(2009) , 10.1016/J.MEDIA.2009.05.005
S. Wild, G. Roglic, A. Green, R. Sicree, H. King, Global Prevalence of Diabetes: Estimates for the year 2000 and projections for 2030 Diabetes Care. ,vol. 27, pp. 1047- 1053 ,(2004) , 10.2337/DIACARE.27.5.1047
Bob Zhang, Fakhri Karray, Qin Li, Lei Zhang, Sparse Representation Classifier for microaneurysm detection and retinal blood vessel extraction Information Sciences. ,vol. 200, pp. 78- 90 ,(2012) , 10.1016/J.INS.2012.03.003
Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik, Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation computer vision and pattern recognition. pp. 580- 587 ,(2014) , 10.1109/CVPR.2014.81
Ilya Sutskever, Geoffrey E. Hinton, Alex Krizhevsky, ImageNet Classification with Deep Convolutional Neural Networks neural information processing systems. ,vol. 25, pp. 1097- 1105 ,(2012)
Dan Ciresan, Jürgen Schmidhuber, Alessandro Giusti, Luca M. Gambardella, Deep Neural Networks Segment Neuronal Membranes in Electron Microscopy Images neural information processing systems. ,vol. 25, pp. 2843- 2851 ,(2012)
Ilya Sutskever, Ian J. Goodfellow, Gregory S. Corrado, Michael Isard, Matthieu Devin, Vincent Vanhoucke, Martin Wicke, Manjunath Kudlur, Rajat Monga, Vijay Vasudevan, Geoffrey Irving, Yangqing Jia, Fernanda B. Viégas, Kunal Talwar, Martin Wattenberg, Ashish Agarwal, Martín Abadi, Yuan Yu, Rafal Józefowicz, Craig Citro, Sherry Moore, Paul Barham, Benoit Steiner, Pete Warden, Josh Levenberg, Derek Gordon Murray, Paul A. Tucker, Jonathon Shlens, Jeffrey Dean, Xiaoqiang Zheng, Chris Olah, Andy Davis, Dan Mané, Mike Schuster, Sanjay Ghemawat, Andrew Harp, Oriol Vinyals, Eugene Brevdo, Zhifeng Chen, Lukasz Kaiser, TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems arXiv: Distributed, Parallel, and Cluster Computing. ,(2015)