Infinite antichains in semilattices

作者: Hilary A. Priestley , J. D. Lawson , Michael Mislove

DOI: 10.1007/BF00333134

关键词: AntichainAlgebra over a fieldCombinatoricsElement (category theory)Countable setProduct (mathematics)MathematicsContext (language use)Semilattice

摘要: In this paper we consider infinite antichains and the semilattices that they generate, mainly in context of continuous semilattices. Conditions are first considered lead to antichain generating a copy countable product two-element semilattice. Then special semilattice, called Δ, is defined, its basic properties developed, it shown our main result semilattice with an converging larger element contains Δ. The closes consideration converge lower or parallel kinds generated context.

参考文章(5)
John R. Liukkonen, Michael Mislove, Measure algebras of locally compact semilattices Springer, Berlin, Heidelberg. pp. 202- 214 ,(1983) , 10.1007/BFB0062030
Gerhard Gierz, Karl Heinrich Hofmann, Klaus Keimel, Jimmie D. Lawson, Michael W. Mislove, Dana S. Scott, A Compendium of continuous lattices Springer Berlin Heidelberg. ,(1980) , 10.1007/978-3-642-67678-9
Karl Heinrich Hofmann, Albert Stralka, Michael Mislove, The Pontryagin duality of compact O-dimensional semilattices and its applications ,(1974)
Jimmie D. Lawson, Algebraic conditions leading to continuous lattices Proceedings of the American Mathematical Society. ,vol. 78, pp. 477- 481 ,(1980) , 10.1090/S0002-9939-1980-0556616-2
D. Duffus, M. Pouzet, I. Rival, Complete ordered sets with no infinite antichains Discrete Mathematics. ,vol. 35, pp. 39- 52 ,(1981) , 10.1016/0012-365X(81)90200-4