Notes on the Parity Conjecture

作者: Tim Dokchitser

DOI: 10.1007/978-3-0348-0618-3_5

关键词: Sato–Tate conjectureSchoof's algorithmAbelian varietyMathematicsModular elliptic curvePure mathematicsCollatz conjectureConjectureSupersingular elliptic curveParity (mathematics)

摘要: The main purpose of these notes is to prove, in a reasonably self-contained way, that finiteness the Tate–Shafarevich group implies parity conjecture for elliptic curves over number fields. Along we review local and global root numbers their classification, end by discussing some peculiar consequences conjecture.

参考文章(55)
Vladimir Dokchitser, Root numbers of non-abelian twists of elliptic curves Proceedings of The London Mathematical Society. ,vol. 91, pp. 300- 324 ,(2005) , 10.1112/S0024611505015261
P. Monsky, Generalizing the Birch–Stephens theorem I. Modular curves Mathematische Zeitschrift. ,vol. 221, pp. 415- 420 ,(1996) , 10.1007/BF02622123
Tim Dokchitser, Vladimir Dokchitser, Parity of ranks for elliptic curves with a cyclic isogeny Journal of Number Theory. ,vol. 128, pp. 662- 679 ,(2008) , 10.1016/J.JNT.2007.02.008
Ralph Greenberg, On the Birch and Swinnerton-Dyer conjecture Inventiones Mathematicae. ,vol. 72, pp. 241- 265 ,(1983) , 10.1007/BF01389322
A. Fr�hlich, J. Queyrut, On the functional equation of the ArtinL-function for characters of real representations Inventiones Mathematicae. ,vol. 20, pp. 125- 138 ,(1973) , 10.1007/BF01404061
Florian Pop, Embedding problems over large fields Annals of Mathematics. ,vol. 144, pp. 1- 34 ,(1996) , 10.2307/2118581
C. L. Stewart, J. Top, On Ranks of Twists of Elliptic Curves and Power-Free Values of Binary Forms Journal of the American Mathematical Society. ,vol. 8, pp. 943- 973 ,(1995) , 10.1090/S0894-0347-1995-1290234-5
B.J. Birch, N.M. Stephens, The parity of the rank of the mordell-weil group Topology. ,vol. 5, pp. 295- 299 ,(1966) , 10.1016/0040-9383(66)90021-8
Jan Nekovář, Some consequences of a formula of Mazur and Rubin for arithmetic local constants Algebra & Number Theory. ,vol. 7, pp. 1101- 1120 ,(2013) , 10.2140/ANT.2013.7.1101