Solution space structure of random constraint satisfaction problems with growing domains

作者: Wei Xu , Pan Zhang , Tian Liu , Fuzhou Gong

DOI: 10.1088/1742-5468/2015/12/P12006

关键词: Cavity methodDiscrete mathematicsSpace (mathematics)Graph coloringStructure (category theory)Second moment methodMathematicsSpin glassConstraint satisfaction problemSatisfiability

摘要: In this paper we study the solution space structure of model RB, a standard prototype Constraint Satisfaction Problem (CSPs) with growing domains. Using rigorous first and second moment method, show that in solvable phase close to satisfiability transition, solutions are clustered into exponential number well-separated clusters, each cluster contains sub-exponential solutions. As consequence, system has clustering (dynamical) transition but no condensation transition. This picture diagram is different from other classic random CSPs fixed domain size, such as K-Satisfiability (K-SAT) graph coloring problems, where exists distinct Our result verifies non-rigorous results obtained using cavity method spin glass theory, sheds light on structures spaces problems large states.

参考文章(24)
M. Mézard, G. Parisi, The Bethe lattice spin glass revisited European Physical Journal B. ,vol. 20, pp. 217- 233 ,(2001) , 10.1007/PL00011099
Alan Frieze*, Nicholas C. Wormald†, Random k -Sat: A Tight Threshold For Moderately Growing k Combinatorica. ,vol. 25, pp. 297- 305 ,(2005) , 10.1007/S00493-005-0017-3
Yun Fan, Jing Shen, Ke Xu, A general model and thresholds for random constraint satisfaction problems Artificial Intelligence. ,vol. 193, pp. 1- 17 ,(2012) , 10.1016/J.ARTINT.2012.08.003
Yun Fan, Jing Shen, On the phase transitions of random k-constraint satisfaction problems Artificial Intelligence. ,vol. 175, pp. 914- 927 ,(2011) , 10.1016/J.ARTINT.2010.11.004
M. Mézard, T. Mora, R. Zecchina, Clustering of solutions in the random satisfiability problem. Physical Review Letters. ,vol. 94, pp. 197205- ,(2005) , 10.1103/PHYSREVLETT.94.197205
Dimitris Achlioptas, Amin Coja-Oghlan, Federico Ricci-Tersenghi, On the solution-space geometry of random constraint satisfaction problems Random Structures and Algorithms. ,vol. 38, pp. 251- 268 ,(2011) , 10.1002/RSA.20323
Barbara M. Smith, Martin E. Dyer, Locating the phase transition in binary constraint satisfaction problems Artificial Intelligence. ,vol. 81, pp. 155- 181 ,(1996) , 10.1016/0004-3702(95)00052-6
D. Achlioptas, Solution clustering in random satisfiability European Physical Journal B. ,vol. 64, pp. 395- 402 ,(2008) , 10.1140/EPJB/E2008-00324-5
Ke Xu, Wei Li, Many hard examples in exact phase transitions Theoretical Computer Science. ,vol. 355, pp. 291- 302 ,(2006) , 10.1016/J.TCS.2006.01.001
Dimitris Achlioptas, Cristopher Moore, Random $k$-SAT: Two Moments Suffice to Cross a Sharp Threshold SIAM Journal on Computing. ,vol. 36, pp. 740- 762 ,(2006) , 10.1137/S0097539703434231