Random $k$-SAT: Two Moments Suffice to Cross a Sharp Threshold

作者: Dimitris Achlioptas , Cristopher Moore

DOI: 10.1137/S0097539703434231

关键词:

摘要: Many NP-complete constraint satisfaction problems appear to undergo a “phase transition” from solubility insolubility when the density passes through critical threshold. In all such cases it is easy derive upper bounds on location of threshold by showing that above certain first moment (expectation) number solutions tends zero. We show in case symmetric constraints, considering second yields nearly matching lower for Specifically, we prove both random hypergraph 2-colorability (Property B) and Not-All-Equal $k$-SAT $2^{k-1}\ln 2 -O(1)$. As corollary, establish order $\Theta(2^k)$, resolving long-standing open problem.

参考文章(42)
Ming-Te Chao, John Franco, Probabilistic analysis of two heuristics for the 3-satisfiability problem SIAM Journal on Computing. ,vol. 15, pp. 1106- 1118 ,(1986) , 10.1137/0215080
Dimitris Achlioptas, Cristopher Moore, The Chromatic Number of Random Regular Graphs Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. pp. 219- 228 ,(2004) , 10.1007/978-3-540-27821-4_20
N. G. de Bruijn, Asymptotic methods in analysis ,(1958)
Riccardo Zecchina, Rémi Monasson, Statistical mechanics of the random K-satisfiability model Physical Review E. ,vol. 56, pp. 1357- 1370 ,(1997) , 10.1103/PHYSREVE.56.1357
Tomasz Luczak, Andrzej Rucinski, Svante Janson, Random Graphs ,(2000)
Bart Selman, David Mitchell, Hector Levesque, Hard and easy distributions of SAT problems national conference on artificial intelligence. pp. 459- 465 ,(1992)
Yacine Boufkhad, Jacques Mandler, Olivier Dubois, Typical random 3-SAT formulae and the satisfiability threshold Electronic Colloquium on Computational Complexity. ,vol. 10, ,(2003)
Dimitris Achlioptas, Cristopher Moore, On the 2-Colorability of Random Hypergraphs randomization and approximation techniques in computer science. pp. 78- 90 ,(2002) , 10.1007/3-540-45726-7_7
Marc Mézard, Giorgio Parisi, Riccardo Zecchina, Analytic and Algorithmic Solution of Random Satisfiability Problems Science. ,vol. 297, pp. 812- 815 ,(2002) , 10.1126/SCIENCE.1073287