Some remarks on Γ-convergence and least squares method

作者: Ennio De Giorgi

DOI: 10.1007/978-1-4684-6787-1_8

关键词: Γ-convergenceRelaxation (iterative method)Mathematical analysisMathematicsWeak topologyApplied mathematicsDifferential equationWeak solution

摘要: In the study of semicontinuity, relaxation, and Γ-convergence problems, few attention has been devoted, up to now, questions concerning functionals arising in differential equations or systems by method least squares. I think that a systematic these could lead interesting results, as, for instance, reasonable “variational” definition “weak solutions” systems.

参考文章(12)
Ferruccio Colombini, Antonio Marino, Sergio Spagnolo, Luciano Modica, Partial differential equations and the calculus of variations : essays in honor of Ennio De Giorgi Birkhäuser. pp. 1- 1018 ,(1989)
Luc Tartar, Remarks on Homogenization Homogenization and Effective Moduli of Materials and Media. ,vol. 1, pp. 228- 246 ,(1986) , 10.1007/978-1-4613-8646-9_11
Maria Luisa Mascarenhas, A linear homogenization problem with time dependent coefficient Transactions of the American Mathematical Society. ,vol. 281, pp. 179- 195 ,(1984) , 10.1090/S0002-9947-1984-0719664-3
Michele Carriero, Antonio Leaci, Eduardo Pascali, Convergenza per l'equazione degli integrali primi associata al problema del rimbalzo elastico unidimensionale Annali di Matematica Pura ed Applicata. ,vol. 133, pp. 227- 256 ,(1983) , 10.1007/BF01766019
R. J. DiPerna, P. L. Lions, Ordinary differential equations, transport theory and Sobolev spaces. Inventiones Mathematicae. ,vol. 98, pp. 511- 547 ,(1989) , 10.1007/BF01393835
Gerald Budge Folland, Introduction to partial differential equations Published in <b>1976</b> in Princeton (N.J.) by Princeton university press. ,(1976)
Youcef Amirat, Kamel Hamdache, Abdelhamid Ziani, Homogénéisation d’équations hyperboliques du premier ordre et application aux écoulements miscibles en milieu poreux Annales De L Institut Henri Poincare-analyse Non Lineaire. ,vol. 6, pp. 397- 417 ,(1989) , 10.1016/S0294-1449(16)30317-1
Mario Miranda, Distribuzioni aventi derivate misure insiemi di perimetro localmente finito Annali Della Scuola Normale Superiore Di Pisa-classe Di Scienze. ,vol. 18, pp. 27- 56 ,(1964)