Inpainting of Binary Images Using the Cahn–Hilliard Equation

作者: Andrea L. Bertozzi , Selim Esedoglu , Alan Gillette

DOI: 10.1109/TIP.2006.887728

关键词:

摘要: … We outline here the use of a model for binary inpainting based on the Cahn–Hilliard equation, which allows for fast, efficient inpainting of degraded text, as well as superresolution of …

参考文章(31)
Ennio De Giorgi, Some remarks on Γ-convergence and least squares method Birkhäuser Boston. pp. 135- 142 ,(1991) , 10.1007/978-1-4684-6787-1_8
Luminita A. Vese, Stanley J. Osher, Modeling Textures with Total Variation Minimization and Oscillating Patterns in Image Processing Journal of Scientific Computing. ,vol. 19, pp. 553- 572 ,(2003) , 10.1023/A:1025384832106
M. Nitzberg, D. Mumford, T. Shiota, Filtering, segmentation, and depth ,(1993)
G.M. Schuster, X. Li, A.K. Katsaggelos, Spline-based boundary loss concealment international conference on image processing. ,vol. 2, pp. 671- 674 ,(2003) , 10.1109/ICIP.2003.1246769
Harald Grossauer, Otmar Scherzer, Using the Complex Ginzburg-Landau Equation for Digital Inpainting in 2D and 3D Scale Space Methods in Computer Vision. pp. 225- 236 ,(2003) , 10.1007/3-540-44935-3_16
Jean E. Taylor, John W. Cahn, Linking anisotropic sharp and diffuse surface motion laws via gradient flows Journal of Statistical Physics. ,vol. 77, pp. 183- 197 ,(1994) , 10.1007/BF02186838
Riccardo March, Marziano Dozio, A variational method for the recovery of smooth boundaries Image and Vision Computing. ,vol. 15, pp. 705- 712 ,(1997) , 10.1016/S0262-8856(97)00002-4
Jianhong Shen, Tony F. Chan, MATHEMATICAL MODELS FOR LOCAL NONTEXTURE INPAINTINGS Siam Journal on Applied Mathematics. ,vol. 62, pp. 1019- 1043 ,(2002) , 10.1137/S0036139900368844
Jean-François Aujol, Guy Gilboa, Tony Chan, Stanley Osher, Structure-Texture Image Decomposition--Modeling, Algorithms, and Parameter Selection International Journal of Computer Vision. ,vol. 67, pp. 111- 136 ,(2006) , 10.1007/S11263-006-4331-Z
I. Daubechies, G. Teschke, Variational image restoration by means of wavelets: Simultaneous decomposition, deblurring, and denoising Applied and Computational Harmonic Analysis. ,vol. 19, pp. 1- 16 ,(2005) , 10.1016/J.ACHA.2004.12.004