A Generalized Cahn-Hilliard Equation with Logarithmic Potentials

作者: Alain Miranville

DOI: 10.1007/978-3-319-19075-4_8

关键词:

摘要: Our aim in this paper is to study the well-posedness for a generalized Cahn-Hilliard equation with proliferation term and singular potentials. We also prove existence of global attractor.

参考文章(35)
Stig Larsson, THE CAHN-HILLIARD EQUATION ,(2007)
Robert V. Kohn, Felix Otto, Upper Bounds on Coarsening Rates Communications in Mathematical Physics. ,vol. 229, pp. 375- 395 ,(2002) , 10.1007/S00220-002-0693-4
A. Miranville, S. Zelik, Chapter 3 Attractors for Dissipative Partial Differential Equations in Bounded and Unbounded Domains Handbook of Differential Equations: Evolutionary Equations. ,vol. 4, pp. 103- 200 ,(2008) , 10.1016/S1874-5717(08)00003-0
Alain Miranville, , ASYMPTOTIC BEHAVIOR OF THE CAHN-HILLIARD-OONO EQUATION Journal of Applied Analysis and Computation. ,vol. 1, pp. 523- 536 ,(2011) , 10.11948/2011036
Amy Novick-Cohen, Chapter 4 The Cahn–Hilliard Equation Handbook of Differential Equations: Evolutionary Equations. ,vol. 4, pp. 201- 228 ,(2008) , 10.1016/S1874-5717(08)00004-2
Jack K. Hale, Infinite dimensional dynamical systems LNM. ,vol. 1007, pp. 379- 400 ,(1981) , 10.1007/BFB0061425
Alexander Oron, Stephen H. Davis, S. George Bankoff, Long-scale evolution of thin liquid films Reviews of Modern Physics. ,vol. 69, pp. 931- 980 ,(1997) , 10.1103/REVMODPHYS.69.931
Andrea L. Bertozzi, Selim Esedoglu, Alan Gillette, Inpainting of Binary Images Using the Cahn–Hilliard Equation IEEE Transactions on Image Processing. ,vol. 16, pp. 285- 291 ,(2007) , 10.1109/TIP.2006.887728