Asymptotics of radiation fields in asymptotically Minkowski space

作者: Dean Baskin , András Vasy , Jared Wunsch

DOI: 10.1353/AJM.2015.0033

关键词: RadiationClassification of electromagnetic fieldsWave equationMathematical analysisCompactification (physics)Rate of decayMathematicsMinkowski spaceAsymptotic expansion

摘要: We consider a non-trapping $n$-dimensional Lorentzian manifold endowed with an end structure modeled on the radial compactification of Minkowski space. find full asymptotic expansion for tempered forward solutions wave equation in all regimes. The rates decay seen are related to resonances natural asymptotically hyperbolic problem ``northern cap'' compactification. For small perturbations space that fit into our framework, expansions yield rate improves Klainerman-Sobolev estimates.

参考文章(21)
Lars Hörmander, On the existence and the regularity of solutions of linear pseudo-differential equations Enseignement mathématique Université. ,(1971)
Richard B. Melrose, The Atiyah-Patodi-Singer Index Theorem ,(1993)
Lars Hörmander, The analysis of linear partial differential operators Springer-Verlag. ,(1990)
Rafe R Mazzeo, Richard B Melrose, Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature Journal of Functional Analysis. ,vol. 75, pp. 260- 310 ,(1987) , 10.1016/0022-1236(87)90097-8
Colin Guillarmou, Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds Duke Mathematical Journal. ,vol. 129, pp. 1- 37 ,(2005) , 10.1215/S0012-7094-04-12911-2
András Vasy, The wave equation on asymptotically de Sitter-like spaces Advances in Mathematics. ,vol. 223, pp. 49- 97 ,(2010) , 10.1016/J.AIM.2009.07.005
Lars Hörmander, Fourier integral operators. I Acta Mathematica. ,vol. 127, pp. 79- 183 ,(1971) , 10.1007/BF02392052
Andrew Hassell, Richard Melrose, András Vasy, Spectral and scattering theory for symbolic potentials of order zero Advances in Mathematics. ,vol. 181, pp. 1- 87 ,(2004) , 10.1016/S0001-8708(03)00020-3
Sergiu Klainerman, Uniform decay estimates and the lorentz invariance of the classical wave equation Communications on Pure and Applied Mathematics. ,vol. 38, pp. 321- 332 ,(1985) , 10.1002/CPA.3160380305