作者: Charles Hadfield
DOI: 10.2140/APDE.2017.10.1877
关键词: Resolvent 、 Pure mathematics 、 Meromorphic function 、 Rank (linear algebra) 、 Laplace operator 、 Metric (mathematics) 、 Mathematics 、 Mathematical analysis 、 Hyperbolic space 、 Complex plane 、 Einstein
摘要: On manifolds with an even Riemannian conformally compact Einstein metric, the resolvent of Lichnerowicz Laplacian, acting on trace-free, divergence-free, symmetric 2-tensors is shown to have a meromorphic continuation complex plane, defining quantum resonances this Laplacian. For higher rank tensors, similar result proven for (convex cocompact) quotients hyperbolic space.