The multivariate arithmetic Tutte polynomial

作者: Petter Brändén , Luca Moci

DOI: 10.1090/S0002-9947-2014-06092-3

关键词: Stable polynomialChromatic polynomialMathematicsCombinatoricsMatroidArithmeticMatrix polynomialTutte polynomialTutte 12-cageTutte matrixTutte theoremDiscrete mathematics

摘要: We introduce an arithmetic version of the multivariate Tutte polynomial recently studied by Sokal, and a quasi-polynomial that interpolates between two. provide generalized Fortuin-Kasteleyn representation for representable matroids, with applications to colorings flows. give new proof positivity coefficients in more general framework pseudo-arithmetic matroids. In case matroid, we geometric interpretation polynomial.

参考文章(13)
Richard Ehrenborg, Margaret Readdy, Michael Slone, Affine and Toric Hyperplane Arrangements Discrete and Computational Geometry. ,vol. 41, pp. 481- 512 ,(2009) , 10.1007/S00454-009-9134-X
Dominic J.A. Welsh, Geoffrey P. Whittle, Arrangements, Channel Assignments, and Associated Polynomials Advances in Applied Mathematics. ,vol. 23, pp. 375- 406 ,(1999) , 10.1006/AAMA.1999.0660
Michele D’Adderio, Luca Moci, Ehrhart polynomial and arithmetic Tutte polynomial The Journal of Combinatorics. ,vol. 33, pp. 1479- 1483 ,(2012) , 10.1016/J.EJC.2012.02.006
Luca Moci, A Tutte polynomial for toric arrangements Transactions of the American Mathematical Society. ,vol. 364, pp. 1067- 1088 ,(2012) , 10.1090/S0002-9947-2011-05491-7
Christos A. Athanasiadis, Characteristic Polynomials of Subspace Arrangements and Finite Fields Advances in Mathematics. ,vol. 122, pp. 193- 233 ,(1996) , 10.1006/AIMA.1996.0059
Federico Ardila, COMPUTING THE TUTTE POLYNOMIAL OF A HYPERPLANE ARRAGEMENT Pacific Journal of Mathematics. ,vol. 230, pp. 1- 26 ,(2007) , 10.2140/PJM.2007.230.1
Michele D’Adderio, Luca Moci, Arithmetic matroids, the Tutte polynomial and toric arrangements Advances in Mathematics. ,vol. 232, pp. 335- 367 ,(2013) , 10.1016/J.AIM.2012.09.001
Michele DʼAdderio, Luca Moci, Graph colorings, flows and arithmetic Tutte polynomial Journal of Combinatorial Theory, Series A. ,vol. 120, pp. 11- 27 ,(2013) , 10.1016/J.JCTA.2012.06.009