Arithmetic matroids, the Tutte polynomial and toric arrangements

作者: Michele D’Adderio , Luca Moci

DOI: 10.1016/J.AIM.2012.09.001

关键词:

摘要: Abstract We introduce the notion of an arithmetic matroid whose main example is a list elements finitely generated abelian group. In particular, we study representability its dual, providing extension Gale duality to this setting. Guided by geometry generalized toric arrangements, provide combinatorial interpretation associated Tutte polynomial, which can be seen as generalization Crapo’s formula for classical polynomial.

参考文章(31)
Petter Brändén, Luca Moci, The multivariate arithmetic Tutte polynomial Transactions of the American Mathematical Society. ,vol. 366, pp. 5523- 5540 ,(2014) , 10.1090/S0002-9947-2014-06092-3
Luca Moci, Simona Settepanella, The homotopy type of toric arrangements Journal of Pure and Applied Algebra. ,vol. 215, pp. 1980- 1989 ,(2011) , 10.1016/J.JPAA.2010.11.008
C. De Concini, C. Procesi, M. Vergne, Vector partition functions and index of transversally elliptic operators Transformation Groups. ,vol. 15, pp. 775- 811 ,(2010) , 10.1007/S00031-010-9101-X
Federico Ardila, Alexander Postnikov, Combinatorics and geometry of power ideals Transactions of the American Mathematical Society. ,vol. 362, pp. 4357- 4384 ,(2010) , 10.1090/S0002-9947-10-05018-X
Matthias Lenz, Hierarchical zonotopal power ideals The Journal of Combinatorics. ,vol. 33, pp. 1120- 1141 ,(2012) , 10.1016/J.EJC.2012.01.004
Emanuele Delucchi, Giacomo d'Antonio, A Salvetti complex for Toric Arrangements and its fundamental group arXiv: Combinatorics. ,(2011)
C. De Concini, C. Procesi, On the geometry of toric arrangements Transformation Groups. ,vol. 10, pp. 387- 422 ,(2005) , 10.1007/S00031-005-0403-3
Michele D’Adderio, Luca Moci, Ehrhart polynomial and arithmetic Tutte polynomial The Journal of Combinatorics. ,vol. 33, pp. 1479- 1483 ,(2012) , 10.1016/J.EJC.2012.02.006
RICHARD P. STANLEY, Log‐Concave and Unimodal Sequences in Algebra, Combinatorics, and Geometry Annals of the New York Academy of Sciences. ,vol. 576, pp. 500- 535 ,(1989) , 10.1111/J.1749-6632.1989.TB16434.X
Wolfgang Dahmen, Charles A. Micchelli, The number of solutions to linear diophantine equations and multivariate splines Transactions of the American Mathematical Society. ,vol. 308, pp. 509- 532 ,(1988) , 10.1090/S0002-9947-1988-0951619-X