Self-dual projective toric varieties

作者: Mathias Bourel , Alicia Dickenstein , Alvaro Rittatore

DOI: 10.1112/JLMS/JDR022

关键词: SubvarietyProjective spaceComplex projective spacePure mathematicsAlgebraic geometry of projective spacesAlgebraic varietyMathematicsAlgebraProjective varietyHomographyQuaternionic projective space

摘要: Let T be a torus over an algebraically closed field k of characteristic 0, and consider projective T-module P(V). We determine when toric subvariety X P(V) is self-dual, in terms the configuration weights V.

参考文章(14)
Vladimir L. Popov, Evgueni A. Tevelev, Self-dual Projective Algebraic Varieties Associated With Symmetric Spaces Encyclopaedia of Mathematical Sciences. pp. 131- 167 ,(2004) , 10.1007/978-3-662-05652-3_8
Izrailʹ Moiseevich Gelʹfand, Andrey V. Zelevinsky, M. M. Kapranov, Discriminants, Resultants, and Multidimensional Determinants ,(2008)
Alicia Dickenstein, Bernd Sturmfels, Elimination Theory in Codimension 2 Journal of Symbolic Computation. ,vol. 34, pp. 119- 135 ,(2002) , 10.1006/JSCO.2002.0545
D. Bayer, S. Popescu, B. Sturmfels, Sysygies of unimodular Lawrence ideals Crelle's Journal. ,vol. 2001, ,(2001) , 10.1515/CRLL.2001.040
I. M. Gel'fand, A. V. Zelevinskii, M. M. Kapranov, Hypergeometric functions and toral manifolds Functional Analysis and Its Applications. ,vol. 23, pp. 94- 106 ,(1989) , 10.1007/BF01078777
CINZIA CASAGRANDE, SANDRA DI ROCCO, Projective Q-factorial toric varieties covered by lines Communications in Contemporary Mathematics. ,vol. 10, pp. 363- 389 ,(2008) , 10.1142/S0219199708002818
Bernd Sturmfels, Gröbner bases and convex polytopes ,(1995)
SANDRA DI ROCCO, Projective Duality of Toric Manifolds and Defect Polytopes Proceedings of The London Mathematical Society. ,vol. 93, pp. 85- 104 ,(2006) , 10.1017/S0024611505015686
Raymond Curran, Eduardo Cattani, Restriction of A-discriminants and dual defect toric varieties Journal of Symbolic Computation. ,vol. 42, pp. 115- 135 ,(2007) , 10.1016/J.JSC.2006.02.006