Self-dual Projective Algebraic Varieties Associated With Symmetric Spaces

作者: Vladimir L. Popov , Evgueni A. Tevelev

DOI: 10.1007/978-3-662-05652-3_8

关键词:

摘要: We discover a class of projective self-dual algebraic varieties. Namely, we consider actions isotropy groups complex symmetric spaces on the projectivized nilpotent varieties modules. For them, classify all orbit closures X such that \(X = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{X} \) where \(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{X} is dual X. give criteria self-duality for considered closures.

参考文章(46)
A. Borel, R. Carter, C. W. Curtis, N. Iwahori, T. A. Springer, R. Steinberg, Seminar on Algebraic Groups and Related Finite Groups Springer Berlin Heidelberg. ,(1970) , 10.1007/BFB0081541
William M. McGovern, The Adjoint Representation and the Adjoint Action Springer, Berlin, Heidelberg. pp. 159- 238 ,(2002) , 10.1007/978-3-662-05071-2_3
P. Littelmann, An effective method to classify nilpotent orbits Algorithms in algebraic geometry and applications. pp. 255- 269 ,(1996) , 10.1007/978-3-0348-9104-2_12
Robert Steinberg, Conjugacy Classes in Algebraic Groups ,(1974)
Dragomir Ž. Ðoković, Explicit Cayley triples in real forms of G2, F4, and E6 Pacific Journal of Mathematics. ,vol. 184, pp. 231- 255 ,(1998) , 10.2140/PJM.1998.184.231
Joseph Harris, Phillip A Griffiths, Principles of Algebraic Geometry ,(1978)
A. L Onishchik, Ė. B. Vinberg, D. A. Leĭtes, Lie groups and algebraic groups ,(1990)
Noriaki Kawanaka, Orbits and stabilzers of nilpotent elements of a graded semisimple Lie algebra Journal of the Faculty of Science. University of Tokyo. Section IA. Mathematics. ,vol. 34, pp. 573- 597 ,(1987)