Optimal color space selection method for plant/soil segmentation in agriculture

作者: J.L. Hernández-Hernández , G. García-Mateos , J.M. González-Esquiva , D. Escarabajal-Henarejos , A. Ruiz-Canales

DOI: 10.1016/J.COMPAG.2016.01.020

关键词: Color analysisComputer visionSoftwareData miningApplication domainProbabilistic logicEngineeringColor spaceArtificial intelligenceColor modelPixelFile format

摘要: Display Omitted A new training algorithm is proposed for agricultural color classification problems.The method selects the optimal space and channels each scenario.Applied to estimate accurately efficiently percentage of green cover (PGC).Developed an application called ACPS (Automatic Classification Plants Soil). Color analysis techniques in agriculture should be able deal with non-trivial capture conditions such as shadows, noise, pixel saturation, low lighting, different varieties crops intrinsic parameters cameras. Previous studies have shown importance selecting optimum domain. This paper presents a probabilistic approach processing capable not only create models plant/soil segmentation, but also select most adequate problem. The system evaluates all possible alternatives, producing channels. Thereby, dependences on kind crop, camera are avoided, since adapted conditions. basis proposal use non-parametric probability density functions colors. has been implemented validated software tool, Soil), thus proving its practical feasibility. final purpose this vegetal ground cover, order obtain PGC (percentage cover) parameter. developed used by professionals, researchers, technicians anyone working area. Furthermore, created can exported defined file format which applications cloud, mobile devices compact controllers that currently being developed.

参考文章(33)
R. Rybczynski, B. Dobrzanski, Colour change of apple as a result of storage, shelf-life, and bruising International Agrophysics. ,vol. 16, pp. 261- 268 ,(2002)
J. Blasco, N. Aleixos, J.M. Roger, G. Rabatel, E. Moltó, AE—Automation and Emerging Technologies Biosystems Engineering. ,vol. 83, pp. 149- 157 ,(2002) , 10.1006/BIOE.2002.0109
G. E. Meyer, T. Mehta, M. F. Kocher, D. A. Mortensen, A. Samal, Textural imaging and discriminant analysis for distinguishing weeds for spot spraying Transactions of the ASABE. ,vol. 41, pp. 1189- 1197 ,(1998) , 10.13031/2013.17244
Isidro Campos, Christopher M.U. Neale, Alfonso Calera, Claudio Balbontín, Jose González-Piqueras, Assessing satellite-based basal crop coefficients for irrigated grapes (Vitis vinifera L.) Agricultural Water Management. ,vol. 98, pp. 45- 54 ,(2010) , 10.1016/J.AGWAT.2010.07.011
D.C. Slaughter, D.K. Giles, D. Downey, Autonomous robotic weed control systems: A review Computers and Electronics in Agriculture. ,vol. 61, pp. 63- 78 ,(2008) , 10.1016/J.COMPAG.2007.05.008
Daniel G. Fernández-Pacheco, David Escarabajal-Henarejos, Antonio Ruiz-Canales, Julián Conesa, Jose M. Molina-Martínez, A digital image-processing-based method for determining the crop coefficient of lettuce crops in the southeast of Spain ☆ Biosystems Engineering. ,vol. 117, pp. 23- 34 ,(2014) , 10.1016/J.BIOSYSTEMSENG.2013.07.014
D. Lorente, N. Aleixos, J. Gómez-Sanchis, S. Cubero, O. L. García-Navarrete, J. Blasco, Recent Advances and Applications of Hyperspectral Imaging for Fruit and Vegetable Quality Assessment Food and Bioprocess Technology. ,vol. 5, pp. 1121- 1142 ,(2012) , 10.1007/S11947-011-0725-1
Yu-Ichi Ohta, Takeo Kanade, Toshiyuki Sakai, Color information for region segmentation Computer Graphics and Image Processing. ,vol. 13, pp. 222- 241 ,(1980) , 10.1016/0146-664X(80)90047-7
M. D. Richardson, D. E. Karcher, L. C. Purcell, Quantifying Turfgrass Cover Using Digital Image Analysis Crop Science. ,vol. 41, pp. 1884- 1888 ,(2001) , 10.2135/CROPSCI2001.1884