Least absolute deviation estimation for all-pass time series models

作者: A. Alexandre Trindade , Richard A. Davis , F. Jay Breidt

DOI: 10.1214/AOS/1013699987

关键词: Applied mathematicsMoving-average modelAutoregressive integrated moving averageAutoregressive–moving-average modelLinear modelMathematicsSTAR modelAutoregressive modelStatisticsLeast absolute deviationsAutocorrelation

摘要: An autoregressive moving average model in which all of the roots of polynomial are reciprocals roots average polynomial and vice versa is called an all-pass time series model. All-pass models generate uncorrelated (white noise) series, but these are not independent non-Gaussian case. approximation to likelihood of the case Laplacian (two-sided exponential) noise yields a modified absolute deviations criterion, can be used even if the underlying not Laplacian. Asymptotic normality for least absolute deviation estimators parameters established under general conditions. Behavior finite samples studied via simulation. The methodology applied exchange rate returns show that linear models mimic “nonlinear” behavior, is applied stock market volume data illustrate a two-step procedure for fitting noncausal autoregressions.

参考文章(24)
William E. Blass, George W. Halsey, Deconvolution of absorption spectra ,(1981)
David Donoho, ON MINIMUM ENTROPY DECONVOLUTION Applied Time Series Analysis II#R##N#Proceedings of the Second Applied Time Series Symposium Held in Tulsa, Oklahoma, March 3–5, 1980. pp. 565- 608 ,(1981) , 10.1016/B978-0-12-256420-8.50024-1
Richard A. Davis, William T. M. Dunsmuir, Least Absolute Deviation Estimation for Regression with ARMA Errors Journal of Theoretical Probability. ,vol. 10, pp. 481- 497 ,(1997) , 10.1023/A:1022620818679
M. OOE, T. J. ULRYCH, MINIMUM ENTROPY DECONVOLUTION WITH AN EXPONENTIAL TRANSFORMATION Geophysical Prospecting. ,vol. 27, pp. 458- 473 ,(1979) , 10.1111/J.1365-2478.1979.TB00979.X
Ralph A Wiggins, Minimum entropy deconvolution Geoexploration. ,vol. 16, pp. 21- 35 ,(1978) , 10.1016/0016-7142(78)90005-4
A.-chuan Hsueh, Jerry Mendel, Minimum-Variance and Maximum-Likelihood Deconvolution for Noncausal Channel Models IEEE Transactions on Geoscience and Remote Sensing. ,vol. 23, pp. 797- 808 ,(1985) , 10.1109/TGRS.1985.289464
Angus Ian McLeod, Wai Keung Li, DIAGNOSTIC CHECKING ARMA TIME SERIES MODELS USING SQUARED‐RESIDUAL AUTOCORRELATIONS Journal of Time Series Analysis. ,vol. 4, pp. 269- 273 ,(1983) , 10.1111/J.1467-9892.1983.TB00373.X
F. J. Breidt, R. A. Davis, TIME‐REVERSIBILITY, IDENTIFIABILITY AND INDEPENDENCE OF INNOVATIONS FOR STATIONARY TIME SERIES Journal of Time Series Analysis. ,vol. 13, pp. 377- 390 ,(1992) , 10.1111/J.1467-9892.1992.TB00114.X