Non-Gaussian Time Series Models

作者: Murray Rosenblatt

DOI: 10.1007/978-1-4684-9386-3_12

关键词: EconometricsApplied mathematicsOrder of integrationGaussianDynamic factorTransfer functionSeries (mathematics)MathematicsTime complexity

摘要: Non-Gaussian linear time series models are discussed. The ways in which they differ from Gaussian noted. This is particularly the case for prediction and parameter or transfer function estimation.

参考文章(16)
David Donoho, ON MINIMUM ENTROPY DECONVOLUTION Applied Time Series Analysis II#R##N#Proceedings of the Second Applied Time Series Symposium Held in Tulsa, Oklahoma, March 3–5, 1980. pp. 565- 608 ,(1981) , 10.1016/B978-0-12-256420-8.50024-1
Keiiti Aki, Paul G. Richards, Quantitative seismology : theory and methods ,(1980)
Enders A. Robinson, Time Series Analysis and Applications ,(1983)
A. Alexandre Trindade, Richard A. Davis, F. Jay Breidt, Least absolute deviation estimation for all-pass time series models Annals of Statistics. ,vol. 29, pp. 919- 946 ,(2001) , 10.1214/AOS/1013699987
Marek Kanter, Lower Bounds for Nonlinear Prediction Error in Moving Average Processes Annals of Probability. ,vol. 7, pp. 128- 138 ,(1979) , 10.1214/AOP/1176995153
E. Gassiat, Adaptive Estimation in Noncausal Stationary AR Processes Annals of Statistics. ,vol. 21, pp. 2022- 2042 ,(1993) , 10.1214/AOS/1176349408
Jens-Peter Kreiss, ON ADAPTIVE ESTIMATION IN AUTOREGRESSIVE MODELS WHEN THERE ARE NUISANCE FUNCTIONS Statistics and Risk Modeling. ,vol. 5, pp. 59- 76 ,(1987) , 10.1524/STRM.1987.5.12.59
Ralph A Wiggins, Minimum entropy deconvolution Geoexploration. ,vol. 16, pp. 21- 35 ,(1978) , 10.1016/0016-7142(78)90005-4
Richard A. Davis, Keh-Shin Lii, Dimitris N. Politis, Deconvolution and Estimation of Transfer Function Phase and Coefficients for NonGaussian Linear Processes. Annals of Statistics. ,vol. 10, pp. 347- 360 ,(1982) , 10.1007/978-1-4419-8339-8_32