Statistical Approaches for Modeling in Microbial Source Tracking

作者: Lluís A. Belanche , Anicet R. Blanch

DOI: 10.1007/978-1-4419-9386-1_9

关键词: EngineeringPollutionMicrobial source trackingSoftware deploymentData miningIdentification (information)

摘要: Microbial source tracking (MST) concerns the definition of new indicators and appropriate detection methods, identification host-specific fecal pollution, ultimately development useful reliable predictive models for practical deployment. Optimal should be designed using proper statistical computational tools analysis available data samples. A further requirement is found in determination sets predictors (indicators, tracers) developing accurate low-cost MST solutions. This chapter briefly reviews some these modeling tools, their use feasibility providing more MST-based results. It also evaluates potential established algorithmic methods to pollution sources.

参考文章(68)
Katharine G. Field, Eunice C. Chern, Linda K. Dick, Jed Fuhrman, John Griffith, Patricia A. Holden, Michael G. LaMontagne, Betty Olson, Michael T. Simonich, A comparative study of culture-independent, library-independent genotypic methods of fecal source tracking. Journal of Water and Health. ,vol. 1, pp. 181- 194 ,(2003) , 10.2166/WH.2003.0020
Francisco Lucena Gutiérrez, Joan Jofre i Torroella, Andrey Payán González, Anicet Blanch i Gisbert, Minimal requirements for parameters to be used for the development of predictive models for microbial source tracking. The example of the pair somatic coliphages and phages infecting Bacteroides Susan Allender-Hagedorn. ,(2008)
J. Nieman, G.M. Brion, Novel bacterial ratio for predicting faecal age Water Science and Technology. ,vol. 47, pp. 45- 49 ,(2003) , 10.2166/WST.2003.0157
Kenji Kira, Larry A. Rendell, The feature selection problem: traditional methods and a new algorithm national conference on artificial intelligence. pp. 129- 134 ,(1992)
G. M. Brion, S. Lingireddy, Identification of Pollution Sources Via Neural Networks Water Science and Technology Library. pp. 179- 197 ,(2000) , 10.1007/978-94-015-9341-0_10
Artificial Neural Networks in Hydrology Springer Publishing Company, Incorporated. ,(2010) , 10.1007/978-94-015-9341-0
Robert Tibshirani, Trevor Hastie, Jerome H. Friedman, The Elements of Statistical Learning ,(2001)
John F. Griffith, Stephen B. Weisberg, Charles D. McGee, Evaluation of microbial source tracking methods using mixed fecal sources in aqueous test samples. Journal of Water and Health. ,vol. 1, pp. 141- 151 ,(2003) , 10.2166/WH.2003.0017
Samuel P. Myoda, C. Andrew Carson, Jeffry J. Fuhrmann, Byoung-Kwon Hahm, Peter G. Hartel, Helen Yampara-Iquise, LeeAnn Johnson, Robin L. Kuntz, Cindy H. Nakatsu, Michael J. Sadowsky, Mansour Samadpour, Comparison of genotypic-based microbial source tracking methods requiring a host origin database. Journal of Water and Health. ,vol. 1, pp. 167- 180 ,(2003) , 10.2166/WH.2003.0019
S Osawa, K Furuse, I Watanabe, Distribution of ribonucleic acid coliphages in animals. Applied and Environmental Microbiology. ,vol. 41, pp. 164- 168 ,(1981) , 10.1128/AEM.41.1.164-168.1981