Micro-mechanical analysis of deformation characteristics of three-dimensional granular materials

作者: O. Durán , N.P. Kruyt , S. Luding

DOI: 10.1016/J.IJSOLSTR.2010.04.014

关键词: Granular materialTangential and normal componentsNormalDiscrete element methodMathematicsIsotropyInfinitesimal strain theoryOrientation (geometry)GeometryDeformation (mechanics)

摘要: The deformation characteristics of idealized granular materials have been studied from the micro-mechanical viewpoint, using Bagi’s three-dimensional formulation for strain tensor [Bagi, K., 1996. Mechanics Materials 22, 165–177]. This is based on Delaunay tessellation space into tetrahedra. set edges tetrahedra can be divided physical contacts and virtual between particles. expresses continuum, macro-scale as an average over all edges, their relative displacements (between two successive states) complementary-area vectors. latter vector a geometrical quantity determined i.e. structure particle packing. Results Discrete Element Method simulations isotropic triaxial loading polydisperse packing spheres used to investigate statistics branch vectors (subdivided contacts) edges. investigated are probability density functions averages groups with same orientation. It shown that these represented by second-order Fourier series in edge orientation. Edge orientations distributed isotropically, contrary contact orientations. lengths normal component isotropically (with respect orientation) values related each other volume fraction assembly. components zero average. The total assembly, given follows uniform-strain prediction. However, neither network nor has this property. displacement direction (determined vector) smaller than according assumption, while larger. caused high interparticle stiffness hinders compression. reverse observation holds tangential vector. contribution empty therefore very important understanding prediction materials.

参考文章(26)
F. Sidoroff, P. Dubujet, F. Emeriault, B. Cambou, Homogenization for granular materials European Journal of Mechanics A-solids. ,vol. 14, pp. 255- 276 ,(1995)
Hernán A. Makse, Nicolas Gland, David L. Johnson, Lawrence M. Schwartz, Why Effective Medium Theory Fails in Granular Materials Physical Review Letters. ,vol. 83, pp. 5070- 5073 ,(1999) , 10.1103/PHYSREVLETT.83.5070
N.P Kruyt, L Rothenburg, Probability density functions of contact forces for cohesionless frictional granular materials International Journal of Solids and Structures. ,vol. 39, pp. 571- 583 ,(2002) , 10.1016/S0020-7683(01)00190-1
Farhang Radjai, Michel Jean, Jean-Jacques Moreau, Stéphane Roux, Force Distributions in Dense Two-Dimensional Granular Systems Physical Review Letters. ,vol. 77, pp. 274- 277 ,(1996) , 10.1103/PHYSREVLETT.77.274
Daniel M. Mueth, Heinrich M. Jaeger, Sidney R. Nagel, FORCE DISTRIBUTION IN A GRANULAR MEDIUM Physical Review E. ,vol. 57, pp. 3164- 3169 ,(1998) , 10.1103/PHYSREVE.57.3164
N.P. Kruyt, L. Rothenburg, Kinematic and static assumptions for homogenization in micromechanics of granular materials Mechanics of Materials. ,vol. 36, pp. 1157- 1173 ,(2004) , 10.1016/J.MECHMAT.2002.12.001
Mahyar Madadi, Olivier Tsoungui, Marc Lätzel, Stefan Luding, On the fabric tensor of polydisperse granular materials in 2D International Journal of Solids and Structures. ,vol. 41, pp. 2563- 2580 ,(2004) , 10.1016/J.IJSOLSTR.2003.12.005
Ngoc-Son Nguyen, Hélène Magoariec, Bernard Cambou, Alexandre Danescu, Analysis of structure and strain at the meso-scale in 2D granular materials International Journal of Solids and Structures. ,vol. 46, pp. 3257- 3271 ,(2009) , 10.1016/J.IJSOLSTR.2009.04.019
R. J. Bathurst, L. Rothenburg, Micromechanical Aspects of Isotropic Granular Assemblies With Linear Contact Interactions Journal of Applied Mechanics. ,vol. 55, pp. 17- 23 ,(1988) , 10.1115/1.3173626
Kristin Lochmann, Luc Oger, Dietrich Stoyan, Statistical analysis of random sphere packings with variable radius distribution Solid State Sciences. ,vol. 8, pp. 1397- 1413 ,(2006) , 10.1016/J.SOLIDSTATESCIENCES.2006.07.011