A comparison of the performance of Wang-Landau-Transition-Matrix algorithm with Wang-Landau algorithm for the determination of the joint density of states for continuous spin models

作者: Shyamal Bhar , Soumen Kumar Roy

DOI: 10.1016/J.CPC.2013.01.004

关键词: MathematicsSpin-½Monte Carlo methodSpace (mathematics)AlgorithmStochastic matrixDensity of statesFunction (mathematics)Random walkCorrelation function

摘要: Abstract Monte Carlo simulation has been performed in a one-dimensional Lebwohl–Lasher model and two-dimensional X Y -model using the Wang–Landau (WL) Wang–Landau-Transition-Matrix (WLTM) methods. Random walk space comprising of energy-order parameter energy-correlation function joint density states (JDOS) were obtained. From JDOS order parameter, susceptibility correlation are calculated. Agreement between results obtained from two algorithms is very good. The work shows that for purpose determination JDOS, WLTM method good alternative to WL algorithm.

参考文章(61)
Andreas Tröster, Christoph Dellago, Wang-Landau sampling with self-adaptive range Physical Review E. ,vol. 71, pp. 066705- 066705 ,(2005) , 10.1103/PHYSREVE.71.066705
Donald A. McQuarrie, Handbook of Mathematical Functions American Journal of Physics. ,vol. 34, pp. 177- 177 ,(1966) , 10.1119/1.1972842
M. Scott Shell, Pablo G. Debenedetti, Athanassios Z. Panagiotopoulos, Generalization of the Wang-Landau method for off-lattice simulations. Physical Review E. ,vol. 66, pp. 056703- ,(2002) , 10.1103/PHYSREVE.66.056703
Ruben G. Ghulghazaryan, Shura Hayryan, Chin-Kun Hu, Efficient combination of Wang-Landau and transition matrix Monte Carlo methods for protein simulations Journal of Computational Chemistry. ,vol. 28, pp. 715- 726 ,(2007) , 10.1002/JCC.20597
Pablo G. Debenedetti, Athanassios Z. Panagiotopoulos, M. Scott Shell, An improved Monte Carlo method for direct calculation of the density of states Journal of Chemical Physics. ,vol. 119, pp. 9406- 9411 ,(2003) , 10.1063/1.1615966
P.M.C. de Oliveira, Broad histogram relation is exact European Physical Journal B. ,vol. 6, pp. 111- 115 ,(1998) , 10.1007/S100510050532
J. A. Nelder, R. Mead, A Simplex Method for Function Minimization The Computer Journal. ,vol. 7, pp. 308- 313 ,(1965) , 10.1093/COMJNL/7.4.308
G. Palma, T. Meyer, R. Labbé, Finite size scaling in the two-dimensional XY model and generalized universality. Physical Review E. ,vol. 66, pp. 026108- 026108 ,(2002) , 10.1103/PHYSREVE.66.026108
T. J. P. Penna, P. M. C. de Oliveira, H. J. Herrmann, Broad Histogram Method Brazilian Journal of Physics. ,vol. 26, pp. 677- 683 ,(1996)
Robert H. Swendsen, Jian-Sheng Wang, Transition Matrix Monte Carlo Method Journal of Statistical Physics. ,vol. 106, pp. 245- 285 ,(2002) , 10.1023/A:1013180330892