Generalization of the Wang-Landau method for off-lattice simulations.

作者: M. Scott Shell , Pablo G. Debenedetti , Athanassios Z. Panagiotopoulos

DOI: 10.1103/PHYSREVE.66.056703

关键词: Wang and Landau algorithmMonte Carlo methodDensity of statesStatistical physicsLattice (order)Dynamic Monte Carlo methodInverseKinetic Monte CarloKinetic energyMathematics

摘要: We present a rigorous derivation for off-lattice implementations of the so-called "random-walk" algorithm recently introduced by Wang and Landau [Phys. Rev. Lett. 86, 2050 (2001)]. Originally developed discrete systems, samples configurations according to their inverse density states using Monte Carlo moves; estimate is refined at each simulation step ultimately used calculate thermodynamic properties. an implementation atomic systems based on separation kinetic configurational contributions states. By constructing "uniform" ensemble degrees freedom-in which all potential energies, volumes, numbers particles are equally probable-we establish framework correct acceptance criteria calculation averages in continuum case. To demonstrate generality our approach, we perform sample calculations Lennard-Jones fluid two variants both cases find good agreement with established literature values vapor-liquid coexistence locus.

参考文章(15)
D. Frenkel, B. Smit, Understanding molecular simulation: from algorithms to applications Computational sciences series. ,vol. 1, pp. 1- 638 ,(2002)
Daan Frenkel, Berend Smit, Jan Tobochnik, Susan R. McKay, Wolfgang Christian, Understanding Molecular Simulation Computers in Physics. ,vol. 11, pp. 351- 354 ,(2001) , 10.1063/1.4822570
M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids ,(1988)
D. Frenkel, B. Smit, Understanding molecular simulation : from algorithms to applications. 2nd ed. San Diego, Calif., [etc.]Academic Press01226735149780122673511. ,(2002)
Fugao Wang, D. P. Landau, Efficient, multiple-range random walk algorithm to calculate the density of states. Physical Review Letters. ,vol. 86, pp. 2050- 2053 ,(2001) , 10.1103/PHYSREVLETT.86.2050
T. F. Miller, M. Eleftheriou, P. Pattnaik, A. Ndirango, D. Newns, G. J. Martyna, Symplectic quaternion scheme for biophysical molecular dynamics The Journal of Chemical Physics. ,vol. 116, pp. 8649- 8659 ,(2002) , 10.1063/1.1473654
Bernd A. Berg, Thomas Neuhaus, Multicanonical algorithms for first order phase transitions Physics Letters B. ,vol. 267, pp. 249- 253 ,(1991) , 10.1016/0370-2693(91)91256-U
Bernd A. Berg, Thomas Neuhaus, Multicanonical ensemble: A new approach to simulate first-order phase transitions. Physical Review Letters. ,vol. 68, pp. 9- 12 ,(1992) , 10.1103/PHYSREVLETT.68.9