Optimal rate of convergence for stochastic Burgers-type equations

作者: Martin Hairer , Kanstantsin Matetski

DOI: 10.1007/S40072-015-0067-5

关键词: Partial differential equationApproximations of πType (model theory)Rate of convergenceWhite noiseNoise (electronics)Burgers' equationNumerical analysisApplied mathematicsMathematics

摘要: Recently, a solution theory for one-dimensional stochastic PDEs of Burgers type driven by space-time white noise was developed. In particular, it shown that natural numerical approximations these equations converge and their convergence rate in the uniform topology is arbitrarily close to \(\frac{1}{6}\). present article we improve this result case additive proving optimal \(\frac{1}{2}\).

参考文章(30)
Terry Lyons, Zhongmin Qian, System Control and Rough Paths ,(2003)
Hajer Bahouri, Raphaël Danchin, Jean-Yves Chemin, Fourier Analysis and Nonlinear Partial Differential Equations ,(2011)
École d'été de probabilités de Saint-Flour, Michael J. Caruana, T. J. Lyons, Thierry Lévy, Differential equations driven by rough paths Springer. ,(2007)
Nicolas B. Victoir, Peter K. Friz, Multidimensional Stochastic Processes as Rough Paths ,(2010)
Christophe Reutenauer, Free Lie Algebras ,(1993)
Giuseppe Da Prato, Jerzy Zabczyk, Second order partial differential equations in Hilbert spaces Cambridge University Press. ,(2002) , 10.1017/CBO9780511543210
Aureli Alabert, István Gyongy, On Numerical Approximation of Stochastic Burgers' Equation Springer, Berlin, Heidelberg. pp. 1- 15 ,(2006) , 10.1007/978-3-540-30788-4_1
Martin Hairer, An Introduction to Stochastic PDEs arXiv: Probability. ,(2009)
René Carmona, Harry Kesten, John B Walsh, John B Walsh, An introduction to stochastic partial differential equations Lecture Notes in Mathematics. pp. 265- 439 ,(1986) , 10.1007/BFB0074920