AnL2-error estimate for an approximation of the solution of a parabolic variational inequality

作者: C. Vuik

DOI: 10.1007/BF01386423

关键词: MathematicsApproximation errorCalculus of variationsVariational inequalityRound-off errorNumerical analysisFinite element methodFinite difference methodMathematical analysisDiscretization

摘要: We estimate the order of difference between numerical approximation and solution a parabolic variational inequality. The is obtained using finite element discretization in space time which more general than used literature. obtain better error estimates those given are compared with experiments.

参考文章(9)
Charles M. Elliott, J. R Ockendon, Weak and variational methods for moving boundary problems ,(1982)
Neil S Trudinger, David G Gilbarg, Elliptic Partial Differential Equations of Second Order ,(2018)
Claes Johnson, A Convergence Estimate for an Approximation of a Parabolic Variational Inequality SIAM Journal on Numerical Analysis. ,vol. 13, pp. 599- 606 ,(1976) , 10.1137/0713050
R. Glowinski, Jacques Louis Lions, Raymond Trémolières, Numerical Analysis of Variational Inequalities ,(1981)
Jim Douglas, Jr, Todd Dupont, Galerkin Methods for Parabolic Equations SIAM Journal on Numerical Analysis. ,vol. 7, pp. 575- 626 ,(1970) , 10.1137/0707048
Alan E. Berger, Richard S. Falk, An error estimate for the truncation method for the solution of parabolic obstacle variational inequalities Mathematics of Computation. ,vol. 31, pp. 619- 628 ,(1977) , 10.1090/S0025-5718-1977-0438707-8
Alfredo Fetter, L ∞ -error estimate for an approximation of a parabolic variational inequality Numerische Mathematik. ,vol. 50, pp. 557- 565 ,(1987) , 10.1007/BF01408576
F. Scarpini, M. A. Vivaldi, Evaluation de l'erreur d'approximation pour une inéquation parabolique relative aux convexes dépendant du temps Applied Mathematics and Optimization. ,vol. 4, pp. 121- 138 ,(1977) , 10.1007/BF01442135