Adaptive finite element methods for variational inequalities

作者: R. Kornhuber , B. Erdmann , R. H. W. Hoppe , M. Frei , U. Wiest

DOI:

关键词:

摘要: In this paper we are concerned with the numerical solution of stationary variational inequalities obstacle type associated second order elliptic differential operators in two or three space dimensions. particular, present adaptive finite element techniques featuring multilevel iterative solvers and a posteriori error estimators for local refinement triangulations. The algorithms rely on an outer-inner scheme outer active set strategy inner preconditioned cg-iterations involving variants hierarchical BPX-preconditioner which derivded framework additive Schwarz iterations. For estimation energy norm presented based approximate quasivariational inequality satis- fied by piecewise quadratic approximation global discretization error. Finally, performance preconditioners is illustrated results wide variety free boundary problems.

参考文章(40)
M. Bieterman, I. Babuška, The finite element method for parabolic equations Numerische Mathematik. ,vol. 40, pp. 339- 371 ,(1982) , 10.1007/BF01396451
Franco Brezzi, William W. Hager, P. A. Raviart, Error estimates for the finite element solution of variational inequalities Numerische Mathematik. ,vol. 31, pp. 1- 16 ,(1978) , 10.1007/BF01396010
Edward Granville Sewell, Automatic generation of triangulations for piecewise polynomial approximation University Microfilms. ,(1972)
H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert North-Holland Pub. Co , American Elsevier Pub. Co.. ,(1973)
Sam Howison, Paul Wilmott, Jeff Dewynne, Option pricing: Mathematical models and computation ,(1994)
Ralf Kornhuber, Monotone multigrid methods for elliptic variational inequalities I Numerische Mathematik. ,vol. 69, pp. 167- 184 ,(1994) , 10.1007/BF03325426
Dilip B. Madan, Eugene Seneta, The Variance Gamma (V.G.) Model for Share Market Returns The Journal of Business. ,vol. 63, pp. 511- 524 ,(1990) , 10.1086/296519