Error estimates for the finite element solution of variational inequalities

作者: Franco Brezzi , William W. Hager , P. A. Raviart

DOI: 10.1007/BF01396010

关键词:

摘要: We study the mixed finite element approximation of variational inequalities, taking as model problems so called "obstacle problem" and "unilateral problem". Optimal error bounds are obtained in both cases.

参考文章(27)
Umberto Mosco, Gilbert Strang, One-sided approximation and variational inequalities Bulletin of the American Mathematical Society. ,vol. 80, pp. 308- 313 ,(1974) , 10.1090/S0002-9904-1974-13477-4
David Kinderlehrer, How a minimal surface leaves an obstacle Acta Mathematica. ,vol. 130, pp. 221- 242 ,(1973) , 10.1007/BF02392266
Richard S. Falk, Error estimates for the approximation of a class of variational inequalities Mathematics of Computation. ,vol. 28, pp. 963- 971 ,(1974) , 10.1090/S0025-5718-1974-0391502-8
Jens Frehse, Two Dimensional Variational Problems with Thin Obstacles. Mathematische Zeitschrift. ,vol. 143, pp. 279- 288 ,(1975) , 10.1007/BF01214380
M. Giaquinta, G. Modica, Regolarità Lipschitziana per la soluzione di alcuni problemi di minimo con vincolo Annali di Matematica Pura ed Applicata. ,vol. 106, pp. 95- 117 ,(1975) , 10.1007/BF02415024
Gilbert Strang, George J. Fix, D. S. Griffin, An Analysis of the Finite Element Method ,(1973)
P. G. Ciarlet, P. A. Raviart, General lagrange and hermite interpolation in Rn with applications to finite element methods Archive for Rational Mechanics and Analysis. ,vol. 46, pp. 177- 199 ,(1972) , 10.1007/BF00252458
Gilbert Strang, Approximation in the finite element method Numerische Mathematik. ,vol. 19, pp. 81- 98 ,(1972) , 10.1007/BF01395933
J. T. Oden, J. N. Reddy, On Mixed Finite Element Approximations SIAM Journal on Numerical Analysis. ,vol. 13, pp. 393- 404 ,(1976) , 10.1137/0713035