On box schemes for elartliptic variational inequalities

作者: J. Steinbach

DOI: 10.1080/01630569708816808

关键词: DiscretizationVariational inequalityPenalty methodMathematicsObstacleMathematical analysisNorm (mathematics)Maximum principleBoundary value problemFinite volume method

摘要: General finite volume approximations in two and three space dimensions are studied for the discretization of interior boundary obstacle problems with mixed conditions. First order convergence (box) solution is shown energy norm. Based on a discrete maximum principle there proposed penalization techniques inequalities. By coupling penalty parameters overall error analyzed. The iterative discussed. Finally, results numerical experiments presented to illustrate behaviour between exact, box solutions.

参考文章(43)
R. Kornhuber, B. Erdmann, R. H. W. Hoppe, M. Frei, U. Wiest, Adaptive finite element methods for variational inequalities de Gruyter. ,(1993)
Joachim Nitsche, L∞-convergence of finite element approximations Springer Berlin Heidelberg. pp. 261- 274 ,(1977) , 10.1007/BFB0064468
J Haslinger, Jindřich Nečas, J Lovíšek, Ivan Hlaváček, Solution of Variational Inequalities in Mechanics ,(1988)
W. Hackbusch, On first and second order box schemes Computing. ,vol. 41, pp. 277- 296 ,(1989) , 10.1007/BF02241218
David Kinderlehrer, Guido Stampacchia, An introduction to variational inequalities and their applications ,(1980)
Alain Bensoussan, Jacques Louis Lions, Impulse Control and Quasi-Variational Inequalities ,(1984)
MARSHALL BERN, DAVID EPPSTEIN, MESH GENERATION AND OPTIMAL TRIANGULATION WORLD SCIENTIFIC. pp. 23- 90 ,(1992) , 10.1142/9789812831699_0003
R. H. W. Hoppe, R. Kornhuber, Adaptive multilevel methods for obstacle problems SIAM Journal on Numerical Analysis. ,vol. 31, pp. 301- 323 ,(1994) , 10.1137/0731016
Noboru Kikuchi, Convergence of a penalty-finite element approximation for an obstacle problem Numerische Mathematik. ,vol. 37, pp. 105- 120 ,(1981) , 10.1007/BF01396189