L∞-convergence of finite element approximations

作者: Joachim Nitsche

DOI: 10.1007/BFB0064468

关键词:

摘要:

参考文章(12)
J. Nitsche, ON DIRICHLET PROBLEMS USING SUBSPACES WITH NEARLY ZERO BOUNDARY CONDITIONS The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations. pp. 603- 627 ,(1972) , 10.1016/B978-0-12-068650-6.50027-7
Frank Natterer, Über die punktweise Konvergenz Finiter Elemente Numerische Mathematik. ,vol. 25, pp. 67- 77 ,(1975) , 10.1007/BF01419529
Richard S. Falk, Error estimates for the approximation of a class of variational inequalities Mathematics of Computation. ,vol. 28, pp. 963- 971 ,(1974) , 10.1090/S0025-5718-1974-0391502-8
P.G Ciarlet, P.-A Raviart, Maximum principle and uniform convergence for the finite element method Computer Methods in Applied Mechanics and Engineering. ,vol. 2, pp. 17- 31 ,(1973) , 10.1016/0045-7825(73)90019-4
P.G. Ciarlet, P.-A. Raviart, Interpolation theory over curved elements, with applications to finite element methods Computer Methods in Applied Mechanics and Engineering. ,vol. 1, pp. 217- 249 ,(1972) , 10.1016/0045-7825(72)90006-0
Ridgway Scott, Optimal ^{∞} estimates for the finite element method on irregular meshes Mathematics of Computation. ,vol. 30, pp. 681- 697 ,(1976) , 10.1090/S0025-5718-1976-0436617-2
J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind Abhandlungen Aus Dem Mathematischen Seminar Der Universitat Hamburg. ,vol. 36, pp. 9- 15 ,(1971) , 10.1007/BF02995904
Haïm Brézis, G. Stampacchia, Sur la régularité de la solution d'inéquations elliptiques Bulletin de la Société mathématique de France. ,vol. 79, pp. 153- 180 ,(1968) , 10.24033/BSMF.1663