Optimal ^{∞} estimates for the finite element method on irregular meshes

作者: Ridgway Scott

DOI: 10.1090/S0025-5718-1976-0436617-2

关键词:

摘要: Uniform estimates for the error in finite element method are derived a model problem on general triangular mesh two dimensions. These optimal if degree of piecewise polynomials is greater than one. Similar also L/sup p/. As an intermediate step, 1/ estimate gradient approximation Green's function proved that all degrees.

参考文章(24)
Joachim Nitsche, L∞-convergence of finite element approximations Springer Berlin Heidelberg. pp. 261- 274 ,(1977) , 10.1007/BFB0064468
Frank Natterer, Über die punktweise Konvergenz Finiter Elemente Numerische Mathematik. ,vol. 25, pp. 67- 77 ,(1975) , 10.1007/BF01419529
Elias M. Stein, Guido L. Weiss, Introduction to Fourier Analysis on Euclidean Spaces. ,(1971)
A. H. Schatz, L. B. Wahlbin, Interior maximum-norm estimates for finite element methods, part II Mathematics of Computation. ,vol. 64, pp. 907- 928 ,(1995) , 10.2307/2153476
Joachim A. Nitsche, Alfred H. Schatz, Interior estimates for Ritz-Galerkin methods Mathematics of Computation. ,vol. 28, pp. 937- 958 ,(1974) , 10.1090/S0025-5718-1974-0373325-9