Interior maximum-norm estimates for finite element methods, part II

作者: A. H. Schatz , L. B. Wahlbin

DOI: 10.2307/2153476

关键词:

摘要: We consider bilinear forms A(.,.) connected with second-order elliptic problems and assume that for u h in a finite element space S , we have A(u - x) = F(X) X local compact support. give estimates U L∞ W∞ 1 of the type best approximation plus weak outside influences size F .

参考文章(27)
Frank Natterer, Über die punktweise Konvergenz Finiter Elemente Numerische Mathematik. ,vol. 25, pp. 67- 77 ,(1975) , 10.1007/BF01419529
Neil S Trudinger, David G Gilbarg, Elliptic Partial Differential Equations of Second Order ,(2018)
A. H. Schatz, L. B. Wahlbin, On the quasi-optimality in _{∞} of the ¹-projection into finite element spaces Mathematics of Computation. ,vol. 38, pp. 1- 22 ,(1982) , 10.1090/S0025-5718-1982-0637283-6
J. H. Bramble, J. E. Osborn, Rate of convergence estimates for nonselfadjoint eigenvalue approximations Mathematics of Computation. ,vol. 27, pp. 525- 549 ,(1973) , 10.1090/S0025-5718-1973-0366029-9
Joachim A. Nitsche, Alfred H. Schatz, Interior estimates for Ritz-Galerkin methods Mathematics of Computation. ,vol. 28, pp. 937- 958 ,(1974) , 10.1090/S0025-5718-1974-0373325-9
P.G. Ciarlet, Basic error estimates for elliptic problems Handbook of Numerical Analysis. ,vol. 2, pp. 17- 351 ,(1991) , 10.1016/S1570-8659(05)80039-0
A. H. Schatz, I. H. Sloan, L. B. Wahlbin, Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point SIAM Journal on Numerical Analysis. ,vol. 33, pp. 505- 521 ,(1996) , 10.1137/0733027
Jim Douglas, Todd Dupont, Lars Wahlbin, Optimal _{∞} error estimates for Galerkin approximations to solutions of two-point boundary value problems Mathematics of Computation. ,vol. 29, pp. 475- 483 ,(1975) , 10.1090/S0025-5718-1975-0371077-0