Global secondary organic aerosol from isoprene oxidation

作者: Daven K. Henze , John H. Seinfeld

DOI: 10.1029/2006GL025976

关键词: IsopreneAerosolEnvironmental chemistryTotal organic carbonTroposphereEnvironmental scienceGlobal model

摘要: [1] Inclusion of isoprene as a source secondary organic aerosol (SOA) in global model increases the burden SOA from all sources by more than factor two. The substantially concentrations free troposphere, because isoprene, and, importantly, isoprene's oxidation products, have much greater at higher altitudes other biogenic precursors, highlighting importance semi-volatile organics for formation. These results are robust with respect to partitioning non-isoprene products and increased wet removal products. This additional enhances production parent hydrocarbons 17%, leads an overall distribution that differs enough previous predictions warrant reevaluation radiative effects carbon aerosol.

参考文章(29)
Hong Liao, Wei-Ting Chen, John H. Seinfeld, Role of climate change in global predictions of future tropospheric ozone and aerosols Journal of Geophysical Research. ,vol. 111, ,(2006) , 10.1029/2005JD006852
Jesse H. Kroll, Nga L. Ng, Shane M. Murphy, Richard C. Flagan, John H. Seinfeld, Secondary organic aerosol formation from isoprene photooxidation. Environmental Science & Technology. ,vol. 40, pp. 1869- 1877 ,(2006) , 10.1021/ES0524301
Daniel A. Lack, Xuexi X. Tie, Neville D. Bofinger, Aaron N. Wiegand, Sasha Madronich, Seasonal variability of secondary organic aerosol: A global modeling study Journal of Geophysical Research: Atmospheres. ,vol. 109, pp. n/a- n/a ,(2004) , 10.1029/2003JD003418
A. Guenther, T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer, C. Geron, Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature) Atmospheric Chemistry and Physics. ,vol. 6, pp. 3181- 3210 ,(2006) , 10.5194/ACP-6-3181-2006
Jay R. Odum, Thorsten Hoffmann, Frank Bowman, Don Collins, Richard C. Flagan, John H. Seinfeld, Gas/Particle Partitioning and Secondary Organic Aerosol Yields Environmental Science & Technology. ,vol. 30, pp. 2580- 2585 ,(1996) , 10.1021/ES950943+
Nadine M Czoschke, Myoseon Jang, Richard M Kamens, Effect of acidic seed on biogenic secondary organic aerosol growth Atmospheric Environment. ,vol. 37, pp. 4287- 4299 ,(2003) , 10.1016/S1352-2310(03)00511-9
Alex Guenther, C. Nicholas Hewitt, David Erickson, Ray Fall, Chris Geron, Tom Graedel, Peter Harley, Lee Klinger, Manuel Lerdau, W. A. Mckay, Tom Pierce, Bob Scholes, Rainer Steinbrecher, Raja Tallamraju, John Taylor, Pat Zimmerman, A global model of natural volatile organic compound emissions Journal of Geophysical Research. ,vol. 100, pp. 8873- 8892 ,(1995) , 10.1029/94JD02950
John H. Offenberg, Tadeusz E. Kleindienst, Mohammed Jaoui, Michael Lewandowski, Edward O. Edney, Thermal properties of secondary organic aerosols Geophysical Research Letters. ,vol. 33, ,(2006) , 10.1029/2005GL024623
K. Tsigaridis, M. Kanakidou, Global modelling of secondary organic aerosol in the troposphere: a sensitivity analysis Atmospheric Chemistry and Physics. ,vol. 3, pp. 1849- 1869 ,(2003) , 10.5194/ACP-3-1849-2003
Ho-Jin Lim, Annmarie G. Carlton, Barbara J. Turpin, Isoprene forms secondary organic aerosol through cloud processing: model simulations. Environmental Science & Technology. ,vol. 39, pp. 4441- 4446 ,(2005) , 10.1021/ES048039H