DNA origami nanopores: an emerging tool in biomedicine

作者: Silvia Hernández-Ainsa , Ulrich F Keyser

DOI: 10.2217/NNM.13.145

关键词: Membrane transportLipid bilayerNanopore sequencingDNA nanotechnologyBiophysicsDNA origamiBiomoleculeMembraneNanotechnologyChemistryNanopore

摘要: Natural systems have developed a precise and intricate machinery to preserve life. The com­ plex mechanisms that living organisms employ control the transport of ions mole­ cules across their lipid membranes represent remarkable example. Membrane is indisputable importance, as it ultimately implicated in such important functions energy production protein synthesis. Many pathways are mediated by pres­ ence small holes (known nanopores biotechnology) based on active or passive proteins. Since organ­ isms so efficiently utilize these protein­based passage biomolecules, why not them obtain devices with potential interest biotechnology biomedicine? A key achievement was detection single molecules utilizing nano­ pores. Two decades ago, Kasianowicz et al. [1] were able detect DNA RNA mol­ ecules for first time using natural pore (a­hemolysin) inserted into an artificial membrane means resistive pulse technique [2]. idea easy elegant: indi­ vidual pass through nanopore lead­ ing changes ionic current characteristic translocating molecule. a­hemolysin (a Staphylococcus aureus pore­ forming protein) has been far most employed biological due its dimensions, stability commercial availability. main advantage pores perfectly defined structure, which guar­ antees reproducibility measurements possibility introducing different chemi­ cal groups mutating sequence pore. This can be used increase

参考文章(20)
Paul W. K. Rothemund, Folding DNA to create nanoscale shapes and patterns Nature. ,vol. 440, pp. 297- 302 ,(2006) , 10.1038/NATURE04586
J. J. Kasianowicz, E. Brandin, D. Branton, D. W. Deamer, Characterization of individual polynucleotide molecules using a membrane channel Proceedings of the National Academy of Sciences of the United States of America. ,vol. 93, pp. 13770- 13773 ,(1996) , 10.1073/PNAS.93.24.13770
Shawn M. Douglas, Adam H. Marblestone, Surat Teerapittayanon, Alejandro Vazquez, George M. Church, William M. Shih, Rapid prototyping of 3D DNA-origami shapes with caDNAno Nucleic Acids Research. ,vol. 37, pp. 5001- 5006 ,(2009) , 10.1093/NAR/GKP436
Ruoshan Wei, Thomas G. Martin, Ulrich Rant, Hendrik Dietz, DNA origami gatekeepers for solid-state nanopores Angewandte Chemie. ,vol. 51, pp. 4864- 4867 ,(2012) , 10.1002/ANIE.201200688
Silvia Hernández-Ainsa, Christoph Muus, Nicholas A. W. Bell, Lorenz J. Steinbock, Vivek V. Thacker, Ulrich F. Keyser, Lipid-coated nanocapillaries for DNA sensing The Analyst. ,vol. 138, pp. 104- 106 ,(2013) , 10.1039/C2AN36397F
Ulrich F. Keyser, Bernard N. Koeleman, Stijn van Dorp, Diego Krapf, Ralph M. M. Smeets, Serge G. Lemay, Nynke H. Dekker, Cees Dekker, Direct force measurements on DNA in a solid-state nanopore Nature Physics. ,vol. 2, pp. 473- 477 ,(2006) , 10.1038/NPHYS344
Ulrich F. Keyser, Controlling molecular transport through nanopores Journal of the Royal Society Interface. ,vol. 8, pp. 1369- 1378 ,(2011) , 10.1098/RSIF.2011.0222
Silvia Hernández-Ainsa, Nicholas A. W. Bell, Vivek V. Thacker, Kerstin Göpfrich, Karolis Misiunas, Maria Eugenia Fuentes-Perez, Fernando Moreno-Herrero, Ulrich F. Keyser, DNA origami nanopores for controlling DNA translocation. ACS Nano. ,vol. 7, pp. 6024- 6030 ,(2013) , 10.1021/NN401759R
Nicholas A. W. Bell, Christian. R. Engst, Marc Ablay, Giorgio Divitini, Caterina Ducati, Tim Liedl, Ulrich F. Keyser, DNA origami nanopores. Nano Letters. ,vol. 12, pp. 512- 517 ,(2012) , 10.1021/NL204098N
Ulrich F. Keyser, Vivek V. Thacker, Silvia Hernández-Ainsa, Nicholas A. W. Bell, Sandip Ghosal, Studying DNA translocation in nanocapillaries using single molecule fluorescence Applied Physics Letters. ,vol. 101, pp. 223704- 223704 ,(2012) , 10.1063/1.4768929