An accuracy study of mesh refinement on mapped grids

作者: D. Calhoun , R. J. LeVeque

DOI: 10.1007/3-540-27039-6_6

关键词: Finite volume methodQuadrilateralEuler equationsRegular gridGridHexahedronComputational scienceAdaptive mesh refinementComputer scienceContext (language use)

摘要: We test a high-resolution wave-propagation algorithm for hyperbolic conservation laws on mapped quadrilateral and hexahedral grids in the context of adaptive mesh refinement. discuss some issues related to using non-Cartesian with AMR study problem which grid refinement interface is fixed space highly skewed portion grid. Smooth shock-wave solutions Euler equations are used investigate possibility that spurious reflections or other numerical errors might be generated at interface.

参考文章(8)
Jan Olav Langseth, Randall J. LeVeque, A wave propagation method for three-dimensional hyperbolic conservation laws Journal of Computational Physics. ,vol. 165, pp. 126- 166 ,(2000) , 10.1006/JCPH.2000.6606
Marsha J. Berger, Randall J. LeVeque, Adaptive Mesh Refinement Using Wave-Propagation Algorithms for Hyperbolic Systems SIAM Journal on Numerical Analysis. ,vol. 35, pp. 2298- 2316 ,(1998) , 10.1137/S0036142997315974
Randall J. LeVeque, Wave Propagation Algorithms for Multidimensional Hyperbolic Systems Journal of Computational Physics. ,vol. 131, pp. 327- 353 ,(1997) , 10.1006/JCPH.1996.5603
M.J. Berger, P. Colella, Local adaptive mesh refinement for shock hydrodynamics Journal of Computational Physics. ,vol. 82, pp. 64- 84 ,(1989) , 10.1016/0021-9991(89)90035-1
JOHN BELL, PHILLIP COLELLA, JOHN TRANGENSTEIN, MICHAEL WELCOME, Adaptive mesh refinement on moving quadrilateral grids 9th Computational Fluid Dynamics Conference. ,(1989) , 10.2514/6.1989-1979