Adaptive Mesh Refinement Using Wave-Propagation Algorithms for Hyperbolic Systems

作者: Marsha J. Berger , Randall J. LeVeque

DOI: 10.1137/S0036142997315974

关键词:

摘要: An adaptive mesh refinement algorithm developed for the Euler equations of gas dynamics has been extended to employ high-resolution wave-propagation algorithms in a more general framework. This allows its use on variety new problems, including hyperbolic not conservation form, problems with source terms or capacity functions, and logically rectangular curvilinear grids. framework requires modified approach maintaining consistency at grid interfaces, which is described detail. The implemented AMRCLAW package, freely available.

参考文章(15)
Randall J. LeVeque, Approximate Riemann Solvers Birkhäuser, Basel. pp. 146- 157 ,(1992) , 10.1007/978-3-0348-8629-1_14
P. K. Sweby, High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws SIAM Journal on Numerical Analysis. ,vol. 21, pp. 995- 1011 ,(1984) , 10.1137/0721062
Darren DeZeeuw, Kenneth G. Powell, An adaptively refined Cartesian mesh solver for the Euler equations Journal of Computational Physics. ,vol. 104, pp. 56- 68 ,(1993) , 10.1006/JCPH.1993.1007
Randall J. LeVeque, High-resolution conservative algorithms for advection in incompressible flow SIAM Journal on Numerical Analysis. ,vol. 33, pp. 627- 665 ,(1996) , 10.1137/0733033
Randall J. LeVeque, Numerical methods for conservation laws ,(1990)
Gilbert Strang, On the Construction and Comparison of Difference Schemes SIAM Journal on Numerical Analysis. ,vol. 5, pp. 506- 517 ,(1968) , 10.1137/0705041
John Bell, Marsha Berger, Jeff Saltzman, Mike Welcome, Three-dimensional adaptive mesh refinement for hyperbolic conservation laws SIAM Journal on Scientific Computing. ,vol. 15, pp. 127- 138 ,(1994) , 10.1137/0915008
Randall J. LeVeque, Wave Propagation Algorithms for Multidimensional Hyperbolic Systems Journal of Computational Physics. ,vol. 131, pp. 327- 353 ,(1997) , 10.1006/JCPH.1996.5603