Random Free Fermions: An Analytical Example of Eigenstate Thermalization.

作者: Javier M. Magán

DOI: 10.1103/PHYSREVLETT.116.030401

关键词: PhysicsQuantum entanglementStatistical mechanicsGaussianStatistical physicsRandomnessRandom matrixQuantum stateFermionEigenstate thermalization hypothesis

摘要: Having analytical instances of the eigenstate thermalization hypothesis (ETH) is obvious interest, both for fundamental and applied reasons. This generally a hard task, due to belief that nonlinear interactions are basic ingredients mechanism. In this article we prove random Gaussian-free fermions satisfy ETH in multiparticle sector, by analytically computing correlations entanglement entropies theory. With explicit construction at hand, finally comment on differences between fully Hamiltonians Gaussian systems, providing physically motivated notion randomness microscopic quantum state.

参考文章(24)
Terence Tao, None, Topics in Random Matrix Theory ,(2012)
Ingo Peschel, Entanglement in solvable many-particle models arXiv: Statistical Mechanics. ,(2011) , 10.1007/S13538-012-0074-1
Subir Sachdev, Subir Sachdev, Subir Sachdev, Bekenstein-Hawking Entropy and Strange Metals arXiv: High Energy Physics - Theory. ,(2015) , 10.1103/PHYSREVX.5.041025
Don N. Page, Average entropy of a subsystem Physical Review Letters. ,vol. 71, pp. 1291- 1294 ,(1993) , 10.1103/PHYSREVLETT.71.1291
Mark Srednicki, Chaos and quantum thermalization Physical Review E. ,vol. 50, pp. 888- 901 ,(1994) , 10.1103/PHYSREVE.50.888
R. V. Jensen, R. Shankar, Statistical behavior in deterministic quantum systems with few degrees of freedom Physical Review Letters. ,vol. 54, pp. 1879- 1882 ,(1985) , 10.1103/PHYSREVLETT.54.1879
Richard E. Prange, Steven M. Girvin, Patrick Lee, The Quantum Hall Effect Physics Today. ,vol. 40, pp. 93- 94 ,(1987) , 10.1063/1.2820275
Martin J. Klein, H. B. G. Casimir, Paul Ehrenfest, Vol. 1. Physics Today. ,vol. 24, pp. 49- 50 ,(1971) , 10.1063/1.3022930
Vatche Sahakian, Samuel Pramodh, From Black Hole to Qubits: Evidence of Fast Scrambling in BMN theory arXiv: High Energy Physics - Theory. ,(2014)
Van Vu, Terence Tao, Random matrices: Universal properties of eigenvectors arXiv: Probability. ,(2011)