Entropy and utility based trip distribution model

作者: R. Kar , S. K. Mazumder

DOI: 10.5897/AJMCSR.9000063

关键词: Binary entropy functionCross entropyMaximum entropy thermodynamicsConditional entropyJoint entropyMathematicsTrip distributionPrinciple of maximum entropyTransfer entropyMathematical economicsApplied mathematics

摘要: This paper aims to explore the interrelation and equivalence between methods of maximum entropy utility in establishing trip distribution model.   Key words: Entropy, utility, distribution, Bose–Einstein entropy, Fermi-Dirac entropy.

参考文章(11)
Klaus Krippendorff, Mathematical Theory of Communication pp. 614- ,(2009)
Ali E. Abbas, An Entropy Approach for Utility Assignment in Decision Analysis BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: 22nd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering. ,vol. 659, pp. 328- 338 ,(2003) , 10.1063/1.1570550
CE Shennon, Warren Weaver, A mathematical theory of communication Bell System Technical Journal. ,vol. 27, pp. 379- 423 ,(1948) , 10.1002/J.1538-7305.1948.TB01338.X
E. T. Jaynes, Information Theory and Statistical Mechanics Physical Review. ,vol. 106, pp. 620- 630 ,(1957) , 10.1103/PHYSREV.106.620
Claude E. Shannon, Warren Weaver, Norbert Wiener, The Mathematical Theory of Communication Physics Today. ,vol. 3, pp. 31- 32 ,(1950) , 10.1063/1.3067010
A.G. Wilson, A statistical theory of spatial distribution models Transportation Research. ,vol. 1, pp. 253- 269 ,(1967) , 10.1016/0041-1647(67)90035-4