An Entropy Approach for Utility Assignment in Decision Analysis

作者: Ali E. Abbas

DOI: 10.1063/1.1570550

关键词: Von Neumann–Morgenstern utility theoremDecision analysisOptimal decisionDecision theorySubjective expected utilityMathematicsTwo-moment decision modelMathematical optimizationEvidential reasoning approachDecision tree

摘要: A fundamental step in decision analysis is the elicitation of decision‐maker’s preferences about prospects a situation form utility values. However, this can be difficult task to perform practice as number may large, and eliciting value for each prospect time consuming stressful maker. To relieve some burden task, paper presents normative method assign unbiased values when only incomplete preference information available We introduce notion density function propose maximum entropy principle assignment.

参考文章(11)
H. Raiffa, R. L. Keeney, David W. Rajala, Decisions with Multiple Objectives: Preferences and Value Trade-Offs ,(1976)
R.A. Howard, Decision analysis: Perspectives on inference, decision, and experimentation Proceedings of the IEEE. ,vol. 58, pp. 632- 643 ,(1970) , 10.1109/PROC.1970.7719
Daniel Kahneman, Amos Tversky, Subjective probability: A judgment of representativeness Cognitive Psychology. ,vol. 3, pp. 430- 454 ,(1972) , 10.1016/0010-0285(72)90016-3
E. T. Jaynes, Information Theory and Statistical Mechanics Physical Review. ,vol. 106, pp. 620- 630 ,(1957) , 10.1103/PHYSREV.106.620
C Shanndn, W Weaver, The Mathematical Theory of Communication ,(1948)
J. Shore, R. Johnson, Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy IEEE Transactions on Information Theory. ,vol. 26, pp. 26- 37 ,(1980) , 10.1109/TIT.1980.1056144
Pekka Korhonen, Jyrki Wallenius, Stanley Zionts, Solving the Discrete Multiple Criteria Problem using Convex Cones Management Science. ,vol. 30, pp. 1336- 1345 ,(1984) , 10.1287/MNSC.30.11.1336
Thomas M. Cover, Joy A. Thomas, Elements of information theory ,(1991)
Harold Jeffreys, R. Bruce Lindsay, Theory of probability ,(1939)
H.R. Rao, A choice set-sensitive analysis of preference information acquisition about discrete resources IEEE Transactions on Systems, Man, and Cybernetics. ,vol. 23, pp. 1062- 1071 ,(1993) , 10.1109/21.247888