Effective one-dimensional models from matrix product states

作者: Frederik Keim , Götz S. Uhrig

DOI: 10.1140/EPJB/E2015-60188-0

关键词: Matrix multiplicationQuantum mechanicsIsing modelState-transition matrixPosition and momentum spacePhysicsThermodynamic limitGround stateCreation and annihilation operatorsMatrix product stateStatistical physics

摘要: In this paper we present a method for deriving effective one-dimensional models based on the matrix product state formalism. It exploits translational invariance to work directly in thermodynamic limit. We show, how representation of creation operator single quasi-particles both real and momentum space can be extracted from dispersion calculation. The is tested analytically solvable Ising model transverse magnetic field. Properties are discussed validated by calculating one-particle contribution spectral weight. Results also given ground energy dispersion.

参考文章(46)
M. Fannes, B. Nachtergaele, R. F. Werner, Finitely correlated states on quantum spin chains Communications in Mathematical Physics. ,vol. 144, pp. 443- 490 ,(1992) , 10.1007/BF02099178
Michael Moeckel, Stefan Kehrein, Interaction Quench in the Hubbard Model Physical Review Letters. ,vol. 100, pp. 175702- ,(2008) , 10.1103/PHYSREVLETT.100.175702
Matthew B. Hastings, Tohru Koma, Spectral gap and exponential decay of correlations Communications in Mathematical Physics. ,vol. 265, pp. 781- 804 ,(2006) , 10.1007/S00220-006-0030-4
Jutho Haegeman, Tobias J. Osborne, Frank Verstraete, Post-matrix product state methods: To tangent space and beyond Physical Review B. ,vol. 88, pp. 075133- ,(2013) , 10.1103/PHYSREVB.88.075133
Laurens Vanderstraeten, Jutho Haegeman, Tobias J. Osborne, Frank Verstraete, S matrix from matrix product states. Physical Review Letters. ,vol. 112, pp. 257202- ,(2014) , 10.1103/PHYSREVLETT.112.257202
Sébastien Dusuel, Michael Kamfor, Kai Phillip Schmidt, Ronny Thomale, Julien Vidal, Bound states in two-dimensional spin systems near the Ising limit: A quantum finite-lattice study Physical Review B. ,vol. 81, pp. 064412- ,(2010) , 10.1103/PHYSREVB.81.064412
P.G. de Gennes, Collective motions of hydrogen bonds Solid State Communications. ,vol. 1, pp. 132- 137 ,(1963) , 10.1016/0038-1098(63)90212-6