S matrix from matrix product states.

作者: Laurens Vanderstraeten , Jutho Haegeman , Tobias J. Osborne , Frank Verstraete

DOI: 10.1103/PHYSREVLETT.112.257202

关键词:

摘要: We use the matrix product state formalism to construct stationary scattering states of elementary excitations in generic one-dimensional quantum lattice systems. Our method is applied spin-1 Heisenberg antiferromagnet, for which we calculate full magnon-magnon S arbitrary momenta and spin, two-particle contribution spectral function, higher order corrections magnetization curve. As our provides an accurate microscopic representation interaction between excitations, envisage description low-energy dynamics spin chains terms these particlelike excitations.

参考文章(50)
Thierry Giamarchi, Quantum physics in one dimension ,(2004)
N. M. Bogoliubov, V. E. Korepin, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions arXiv: Condensed Matter. ,(1993)
Lluís Masanes, Area law for the entropy of low-energy states Physical Review A. ,vol. 80, pp. 052104- ,(2009) , 10.1103/PHYSREVA.80.052104
Ulrich Schollwöck, The density-matrix renormalization group in the age of matrix product states Annals of Physics. ,vol. 326, pp. 96- 192 ,(2011) , 10.1016/J.AOP.2010.09.012
Steven R. White, Density matrix formulation for quantum renormalization groups Physical Review Letters. ,vol. 69, pp. 2863- 2866 ,(1992) , 10.1103/PHYSREVLETT.69.2863
Till D. Kühner, Steven R. White, Dynamical correlation functions using the density matrix renormalization group Physical Review B. ,vol. 60, pp. 335- 343 ,(1999) , 10.1103/PHYSREVB.60.335
Eric Jeckelmann, Dynamical density-matrix renormalization-group method Physical Review B. ,vol. 66, pp. 045114- ,(2002) , 10.1103/PHYSREVB.66.045114
F. Verstraete, J. J. García-Ripoll, J. I. Cirac, Matrix product density operators: simulation of finite-temperature and dissipative systems. Physical Review Letters. ,vol. 93, pp. 207204- 207204 ,(2004) , 10.1103/PHYSREVLETT.93.207204