Li-intercalation behaviour of vanadium oxide thin film prepared by thermal oxidation of vanadium metal

作者: Rakel Lindström , Vincent Maurice , Henri Groult , Laurent Perrigaud , Sandrine Zanna

DOI: 10.1016/J.ELECTACTA.2006.01.049

关键词: Chemical vapor depositionOxideAnalytical chemistryX-ray photoelectron spectroscopyChemistryThin filmVanadiumThermal oxidationLithium oxideVanadium oxideElectrochemistryGeneral Chemical Engineering

摘要: Abstract In order to produce thin films of crystalline V 2 O 5 , vanadium metal was thermally oxidised at 500 °C under oxygen pressures between 250 and 1000 mbar for 1–5 min. The oxide were characterised by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), diffraction (XRD) Rutherford backscattering spectrometry (RBS). lithium intercalation performance the investigated cyclic voltammetry (CV), chronopotentiometry electrochemical impedance (EIS). It shown that composition, crystallinity related properties critically dependent on oxidation conditions. formation stimulated higher pressure longer time. Exposure 5 min 750 mbar resulted in a surface film composed 5, consisting crystallites up 200 nm lateral size. thickness layer about 100 nm. This found have good cycling potential window 3.8 2.8 V, with stable capacity 117 ± 10 mAh/g an applied current density 3.4 μA/cm . diffusion coefficients corresponding two plateaus 3.4 3.2 V determined from measurements (5.2 3.0) × 10 −13  cm  s −1 respectively. Beneath layer, lower oxides (mainly VO ) close metal. At shorter exposure times, less amount 4+ increased film, as revealed XPS. intermediate times mixture 6 13 film.

参考文章(39)
S. Komaba, N. Kumagai, M. Baba, F. Miura, N. Fujita, H. Groult, D. Devilliers, B. Kaplan, Preparation of Li-Mn-O thin films by r.f.-sputtering method and its application to rechargeable batteries Journal of Applied Electrochemistry. ,vol. 30, pp. 1179- 1182 ,(2000) , 10.1023/A:1004047614084
C.M. Julien, Lithium intercalated compounds: Charge transfer and related properties Materials Science & Engineering R-reports. ,vol. 40, pp. 47- 102 ,(2003) , 10.1016/S0927-796X(02)00104-3
A. Mukherjee, S.P. Wach, Kinetics of the oxidation of vanadium in the temperature range 350–950°C Journal of The Less Common Metals. ,vol. 92, pp. 289- 300 ,(1983) , 10.1016/0022-5088(83)90495-2
Ö. Bergström, H. Björk, T. Gustafsson, J.O. Thomas, Direct XRD observation of oxidation-state changes on Li-ion insertion into transition-metal oxide hosts Journal of Power Sources. ,vol. 82, pp. 685- 689 ,(1999) , 10.1016/S0378-7753(98)00231-6
C Delmas, H Cognac-Auradou, JM Cocciantelli, M Ménétrier, JP Doumerc, None, The LixV2O5 system: An overview of the structure modifications induced by the lithium intercalation Solid State Ionics. ,vol. 69, pp. 257- 264 ,(1994) , 10.1016/0167-2738(94)90414-6
S. Deki, Y. Aoi, Y. Miyake, A. Gotoh, A. Kajinami, Novel wet process for preparation of vanadium oxide thin film Materials Research Bulletin. ,vol. 31, pp. 1399- 1406 ,(1996) , 10.1016/0025-5408(96)00136-5
Joon-Sung Bae, Su-Il Pyun, Electrochemical lithium intercalation reaction of anodic vanadium oxide film Journal of Alloys and Compounds. ,vol. 217, pp. 52- 58 ,(1995) , 10.1016/0925-8388(94)01288-S
M. Demeter, M. Neumann, W. Reichelt, Mixed-valence vanadium oxides studied by XPS Surface Science. ,vol. 454, pp. 41- 44 ,(2000) , 10.1016/S0039-6028(00)00111-4
C. Cohen, J.A. Davies, A.V. Drigo, T.E. Jackman, Intercomparison of absolute standards for RBS studies Nuclear Instruments and Methods in Physics Research. ,vol. 218, pp. 147- 148 ,(1983) , 10.1016/0167-5087(83)90970-5
S. Lars T. Andersson, ESCA investigation of V2O5+TiO2 catalysts for the vapour phase oxidation of alkylpyridines Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases. ,vol. 75, pp. 1356- 1370 ,(1979) , 10.1039/F19797501356