Renormalization group-based subgrid scale turbulence closures

作者: V. Yakhot , S. A. Orszag , R. B. Pelz

DOI: 10.1007/3-540-13917-6_205

关键词: TurbulenceBuoyancyStatistical physicsRenormalization groupReynolds numberTurbulent channel flowTurbulence closuresScale (ratio)Physics

摘要: Dynamic renormalization group methods are applied to the derivation of subgrid scale (SGS) closures for high Reynolds number (R) turbulence. The resulting SGS attractive in that they do not require additional ad hoc treatment wall layers and may be used derive more complicated physical problems, such as flows with buoyancy effects or chemical reactions, without arbitrary modelling parameters. Numerical experiments these turbulent channel flow at show give results reasonable agreement experiment.

参考文章(9)
Parviz Moin, John Kim, Numerical investigation of turbulent channel flow Journal of Fluid Mechanics. ,vol. 118, pp. 341- 377 ,(1982) , 10.1017/S0022112082001116
Dieter Forster, David R. Nelson, Michael J. Stephen, Large-distance and long-time properties of a randomly stirred fluid Physical Review A. ,vol. 16, pp. 732- 749 ,(1977) , 10.1103/PHYSREVA.16.732
Steven A. Orszag, Anthony T. Patera, Calculation of Von Kármán's Constant for Turbulent Channel Flow Physical Review Letters. ,vol. 47, pp. 832- 835 ,(1981) , 10.1103/PHYSREVLETT.47.832
James W. Deardorff, A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers Journal of Fluid Mechanics. ,vol. 41, pp. 453- 480 ,(1970) , 10.1017/S0022112070000691
J. SMAGORINSKY, GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS Monthly Weather Review. ,vol. 91, pp. 99- 164 ,(1963) , 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
Robert H. Kraichnan, Dynamics of Nonlinear Stochastic Systems Journal of Mathematical Physics. ,vol. 2, pp. 124- 148 ,(1961) , 10.1063/1.1724206