Formulation of the theory of turbulence in an incompressible fluid

作者: H.W Wyld

DOI: 10.1016/0003-4916(61)90056-2

关键词:

摘要: Abstract The theory of turbulence in an incompressible fluid is formulated using methods similar to those quantum field theory. A systematic perturbation set up, and the terms series are shown be one correspondence with certain diagrams analogous Feynman diagrams. From a study it that can rearranged partially summed such way as reduce problem solution three simultaneous integral equations for functions, which second order velocity correlation function. have form infinite power equations, first few derived from analysis sixth order. Truncation at lowest nontrivial yields Chandrasekhar's equation, truncation higher discussed by Kraichnan.

参考文章(7)
Robert H. Kraichnan, Relation of Fourth-Order to Second-Order Moments in Stationary Isotropic Turbulence Physical Review. ,vol. 107, pp. 1485- 1490 ,(1957) , 10.1103/PHYSREV.107.1485
ON THE DECAY OF A NORMALLY DISTRIBUTED AND HOMOGENEOUS TURBULENT VELOCITY FIELD Phil. Trans. R. Soc.#N##TAB##TAB##TAB##TAB#Lond. A. ,vol. 247, pp. 163- 189 ,(1954) , 10.1098/RSTA.1954.0016
F. Rohrlich, J. M. Jauch, L. Teng, Theory of Photons and Electrons ,(1955)
S. Chandrasekhar, Theory of Turbulence Physical Review. ,vol. 102, pp. 941- 952 ,(1956) , 10.1103/PHYSREV.102.941
Robert H. Kraichnan, Irreversible Statistical Mechanics of Incompressible Hydromagnetic Turbulence Physical Review. ,vol. 109, pp. 1407- 1422 ,(1958) , 10.1103/PHYSREV.109.1407
Gerald Rosen, Turbulence Theory and Functional Integration. I. Physics of Fluids. ,vol. 3, pp. 519- 524 ,(1960) , 10.1063/1.1706084
W. Heisenberg, Zur statistischen Theorie der Turbulenz European Physical Journal. ,vol. 124, pp. 628- 657 ,(1948) , 10.1007/BF01668899