作者: Jeff E. Lewis , Renata Selvaggi , Irene Sisto
DOI: 10.1090/S0002-9947-1993-1124170-6
关键词: Mathematical analysis 、 Fourier transform 、 Mathematics 、 Operator algebra 、 Operator (computer programming) 、 Kernel (statistics) 、 Fourier integral operator 、 Pure mathematics 、 Analytic function 、 Singular integral 、 Symbol (programming)
摘要: We show that the kernel of a singular integral operator is real analytic in R n \{0} iff symbol [Fourier transform] \{0}. The operators with continuous coefficients and kernels (symbols) form an algebra usual symbolic calculus. invariantly defined under C 1 changes coordinates