A symbolic calculus for layer potentials on ¹ curves and ¹ curvilinear polygons

作者: Jeff E. Lewis

DOI: 10.1090/S0002-9939-1991-1043413-4

关键词: Discrete mathematicsBiharmonic equationCommutatorMathematicsHilbert transformCompact operatorKernel (algebra)Operator (computer programming)Double layer potentialPiecewise

摘要: A symbolic calculus for some algebras of Mellin operators on the finite interval J _ [0, 11 is developed. The are ample enough to include singular integral and analytic double layer potentials their adjoints C1 curves piecewise with corners. Fredholmness index LP(J) completely determined by principal symbol Lp (J), Smbl1/. This note describes pseudodifferential type, or operators, LP(J), 1], which useful potential curvilinear polygons. resulting gives necessary sufficient conditions acting (J) . paper a companion Lewis [L]. first step enlarge described in Lewis-Parenti [LP], J. Elschner [E], [L] multiplication continuous functions C(J). In ? 1 we carefully describe stucture Op 1, 3 then operator class Opla 0 C(J) extend map, Smbll/p. ?2, show that kernel k how calculate symbols. Theorem 2 shows important Hilbert transform Hardy at endpoints corners curves. essential (Theorem 3) use Commutator A. P. Calder6n C. [CCFJR] remainders compact LP(J). pioneering work domains was done E. B. Fabes, M. Jodeit, N. Riviere [FJR]. Cohen Gosselin [CG] treated multiple biharmonic domains. Our proof spirit [FJR] [CG]. Received editors September 21, 1989 and, revised form, March 1990. 1980 Mathematics Subject Classification (1985 Revision). Primary 35S15, 45EO5.

参考文章(9)
Jeff E. Lewis, Cesare Parenti, Pseudodifferential operators of mellin type Communications in Partial Differential Equations. ,vol. 8, pp. 477- 544 ,(1983) , 10.1080/03605308308820276
A. P. Calderón, C. P. Calderón, E. Fabes, M. Jodeit, N. M. Riviere, Applications of the Cauchy integral on Lipschitz curves Bulletin of the American Mathematical Society. ,vol. 84, pp. 287- 291 ,(1978) , 10.1090/S0002-9904-1978-14478-4
R. R. Coifman, A. McIntosh, Y. Meyer, L’intégrale de Cauchy définit un opérateur borné sur $L^2$ pour les courbes lipschitziennes Annals of Mathematics. ,vol. 116, pp. 361- 387 ,(1982) , 10.2307/2007065
Johannes Elschner, Asymptotics of Solutions to Pseudodifferential Equations of MELLIN Type Mathematische Nachrichten. ,vol. 130, pp. 267- 305 ,(1987) , 10.1002/MANA.19871300125
E. B. Fabes, M. Jodeit, N. M. Rivière, Potential techniques for boundary value problems on C1-domains Acta Mathematica. ,vol. 141, pp. 165- 186 ,(1978) , 10.1007/BF02545747
A. P. Calderon, Cauchy integrals on Lipschitz curves and related operators. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 74, pp. 1324- 1327 ,(1977) , 10.1073/PNAS.74.4.1324
Jeff E. Lewis, Layer potentials for elastostatics and hydrostatics in curvilinear polygonal domains Transactions of the American Mathematical Society. ,vol. 320, pp. 53- 76 ,(1990) , 10.1090/S0002-9947-1990-1005935-5
Martin Costabel, Singular integral operators on curves with corners Integral Equations and Operator Theory. ,vol. 3, pp. 323- 349 ,(1980) , 10.1007/BF01701497
J. Cohen, J. Gosselin, The Dirichlet problem for the biharmonic equation in a C1 domain in the plane Indiana University Mathematics Journal. ,vol. 32, pp. 635- 685 ,(1983)